BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Archivo de la categoría ‘Neurociencias’

Ciencia semanal: los ‘Homo erectus’ podrían haber tocado el piano

Una ronda rápida de las noticias científicas más destacadas de esta semana que termina.

Pensando como humanos desde hace 1,8 millones de años

¿Desde cuándo los humanos somos humanos? Si pudiéramos de repente introducirnos en la mente de un individuo perteneciente a una especie ancestral de la familia humana, como un australopiteco o un Homo erectus, ¿a partir de cuál de ellos nos reconoceríamos a nosotros mismos como humanos, con nuestra autoconsciencia y nuestra capacidad de raciocinio?

Esta es una de las preguntas más interesantes de la paleoantropología, y también de las más difíciles de responder. Ni siquiera podemos precisar del todo cómo siente y piensa hoy uno de nuestros parientes vivos más próximos, como el bonobo o el chimpancé; ¿cómo hacerlo para una especie que desapareció hace miles de años?

Las nuevas tecnologías y la creatividad de los científicos hoy están logrando adentrarse en terrenos que antes parecían impenetrables. En muchos casos la clave de estos avances está en la interdisciplinariedad, la comunicación entre especialistas de ramas científicas muy diversas, tanto que hasta hace unos años no podría imaginarse para qué los conocimientos de uno podrían servir al otro. Por ejemplo, y como he contado aquí en alguna ocasión, hoy los arqueólogos ya no solo emplean libros y herramientas de campo, sino que aprovechan la capacidad de herramientas físicas avanzadas como los aceleradores de partículas para desentrañar secretos de sus hallazgos que serían inaccesibles por otros medios.

La investigadora de la Universidad de Indiana (EEUU) Shelby Putt es neuroarqueóloga, una especialidad que habría parecido absurda hace unos años, ya que ni el pensamiento ni su sustrato biológico, las neuronas, dejan huellas en el registro fósil. Pero Putt ha ideado un precioso experimento para tratar de entender cómo nuestros parientes ancestrales se parecían a nosotros en sus capacidades mentales.

La neuroarqueóloga de la Universidad de Indiana Shelby Putt. Imagen de U of Iowa.

La neuroarqueóloga de la Universidad de Indiana Shelby Putt. Imagen de U of Iowa.

Putt y sus colaboradores pusieron a un grupo de voluntarios a fabricar herramientas de piedra como lo hacían los antiguos homininos en dos etapas distintas de la evolución: según la industria olduvayense, que comenzó a utilizarse hace 2,6 millones de años, o la achelense, más avanzada, cuyos primeros restos se remontan a hace 1,8 millones de años con el Homo erectus, y que se han fabricado hasta hace unos 100.000 años. Mientras los voluntarios se dedicaban a esta artesanía prehistórica, se registraba su actividad cerebral mediante una técnica avanzada no invasiva llamada espectroscopía funcional de infrarrojo cercano.

Los resultados, publicados en Nature Human Behaviour, muestran que la fabricación de las herramientas olduvayenses, más primitivas, solo requiere la actividad de regiones cerebrales implicadas en la atención visual y el control motor. Por el contrario, las achelenses activan una parte del cerebro mucho mayor, incluyendo áreas de alto nivel intelectual implicadas en la planificación. “Sorprendentemente, estas partes del cerebro son las mismas implicadas en actividades modernas como tocar el piano”, dice Putt. El estudio concluye: “La fabricación de herramientas achelenses puede tener más vínculos evolutivos con interpretar a Mozart que con citar a Shakespeare”.

Los superbichos son anteriores a los dinosaurios

Las bacterias multirresistentes, inmunes a todos los antibióticos conocidos, son hoy una de las mayores preocupaciones de epidemiólogos y especialistas en salud pública. Conocidos coloquialmente como superbichos (superbugs en inglés), estos microbios suelen anidar en los hospitales y en numerosas ocasiones provocan la muerte de pacientes ingresados por otras causas. Algunos expertos llegan incluso a dibujar un futuro atemorizador, en el que nuestros antibióticos actuales serán del todo inservibles y regresaremos a la época en que no teníamos herramientas para combatir las infecciones bacterianas.

Un nuevo estudio dirigido por Michael Gilmore, de la Facultad de Medicina de Harvard (EEUU), y publicado en la revista Cell, ha rastreado los orígenes evolutivos de un tipo de superbichos, los enterococos. Los resultados son sorprendentes: el origen de estos seres se remonta a hace 450 millones de años, en una época anterior a los dinosaurios, cuando los primeros animales estaban saliendo del agua para colonizar el medio terrestre.

Imagen de Mark Witton.

Imagen de Mark Witton.

Según los investigadores, cuando aquellos animales comenzaron a abandonar el medio acuático, llevaron con ellos los ancestros de los enterococos, y aquel cambio de hábitat fue seleccionando los genes necesarios para hacerlos resistentes a la desecación, a la falta de nutrientes y a las sustancias antimicrobianas, en lo cual está el origen de su extraordinaria resistencia a todo tipo de agresiones del medio externo. Cuatrocientos cincuenta millones de años después, es evidente que su estrategia evolutiva ha sido todo un éxito para ellos, y una seria amenaza para nosotros.

Un médico pronosticó el ciberataque

El premio al profeta de la semana se lo lleva Krishna Chinthapalli, neurólogo del Hospital Nacional de Neurología y Neurocirugía de Londres. El pasado miércoles, Chinthapalli recordaba en la revista British Medical Journal un reciente ciberataque a un hospital de Los Ángeles en el que se utilizó un virus de ransomware, que obliga a los atacados a pagar un rescate para recuperar el control de sus sistemas informáticos. El neurólogo escribía: “Deberíamos estar preparados: casi con seguridad este año más hospitales sufrirán ataques de ransomware“. Solo dos días después, un ataque con el ransomware WannaCry secuestraba el sistema británico de salud pública, entre otras muchas instituciones de varios países.

La Nebulosa del Cangrejo, vista como nunca

Les dejo con esta nueva y espectacular imagen de la Nebulosa del Cangrejo, publicada esta semana. La nebulosa es el resto de la violenta explosión de una supernova que pudo verse en el cielo en el año 1054 de nuestra era. Esta nueva imagen se ha construido superponiendo capturas en todo el espectro de luz tomadas por cinco instrumentos astronómicos: ondas de radio en rojo por el VLA, infrarrojo en amarillo por el telescopio espacial Spitzer, luz visible en verde por el Hubble, ultravioleta en azul por el XMM-Newton y rayos X en morado por el Chandra.

Nueva imagen de la Nebulosa del Cangrejo. Imagen de NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; y Hubble/STScI.

Nueva imagen de la Nebulosa del Cangrejo. Imagen de NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; y Hubble/STScI.

Pasen y vean una ilusión óptica que les dejará boquiabiertos

Uno ha visto ya tantas ilusiones ópticas que se le llega a formar callo en el órgano de la sorpresa. Por supuesto que los engaños siguen cumpliendo su función, dado que el sistema ojo-cerebro está hecho para apreciar según qué cosas de forma diferente a como son en realidad (si es que existe la realidad tal como la conocemos, pero esta es otra historia).

Una captura de la nueva ilusión de Sugihara. Imagen de YouTube.

Una captura de la nueva ilusión de Sugihara. Imagen de YouTube.

Pero lo que consigue el japonés Kokichi Sugihara está a otro nivel. Les pongo en antecedentes. Sugihara es un ingeniero del Instituto Meiji para el Estudio Avanzado de las Ciencias Matemáticas de Japón. En 2010, su nombre ya sonó en los medios de ciencia cuando construyó un elaborado montaje que ilustraba y explicaba el fenómeno de las llamadas cuestas magnéticas o gravitatorias.

Hasta en un centenar de lugares del mundo se ha descrito un insólito fenómeno: los coches, o incluso una pelota, parecen rodar solos por la carretera, pero cuesta arriba. Hará un par de décadas, recuerdo que uno de esos programas de televisión dedicados a explotar la afición humana a inventar misterios sobrenaturales donde no los hay hizo buen caldo con una de esas presuntas cuestas magnéticas en una carretera cercana a Ronda, en Málaga.

En otros lugares han ido más lejos: la llamada Magnetic Hill de Canadá sirve para dar nombre a un distrito, e incluso construyeron una variante de la carretera para desarrollar el tramo original como atracción turística: quien quiera verlo, que pague. En varios de estos lugares dispersos por el mundo se han colocado carteles en los que se ofrecen supuestas explicaciones seudocientíficas del fenómeno, como anomalías gravitatorias o magnéticas.

Pero naturalmente, no hay nada de esto, sino solo un sistema visual humano fácil de engañar. Newton sigue funcionando en todo el universo y, que se sepa, Ronda y Canadá siguen formando parte del universo. Y en el universo las cosas ruedan cuesta abajo, no cuesta arriba. Para demostrarlo, Sugihara construyó no una cuesta magnética, sino cuatro, demostrando que se trata de una ilusión óptica, un insólito efecto de la perspectiva que resulta en una impresión contraria a la realidad: parece que la carretera sube, cuando en realidad baja.

Con este proyecto, Sugihara ganó en 2010 el concurso Best Illusion of the Year. Pero si esto les ha sorprendido, a ver qué les parece la nueva creación de Sugihara, que ha merecido (extrañamente) el segundo premio en la edición del concurso de 2016. No hay trucos de vídeo, y el espejo es solo un espejo normal. Obsérvenlo, y tengan cuidado de mantener la boca cerrada, que es época de moscas.

¿Qué diablos está pasando? Según se deduce de su web (que les recomiendo visitar; es como un parque de atracciones para los ojos), Sugihara lleva décadas trabajando en el diseño de ilusiones visuales mediante objetos “imposibles” y ambiguos, en los que la pérdida de la perspectiva tridimensional en el vídeo obliga a nuestro cerebro a interpretar una geometría diferente de la real.

En el caso del espejo, tenemos dos perspectivas planas diferentes del mismo objeto: la directa, desde nuestro ángulo de visión, y la opuesta, que el reflejo nos devuelve. En realidad los objetos del vídeo no son cilindros ni prismas cuadrados, sino más bien algo intermedio entre ambos, y desde ángulos contrarios el resultado es distinto. El secreto está en el diseño de los bordes, que nuestro cerebro quiere ver planos, cuando en realidad son ondulados. Y es esta diferente distancia de nuestro punto de vista a las zonas elevadas y deprimidas de los bordes la que construye la ilusión del cilindro o el prisma. Este vídeo lo explica:

Si tienen a mano una impresora 3D y quieren probarlo ustedes mismos, aquí podrán encontrar los archivos para fabricarse su propio cilindro ambiguo. Y de propina, les dejo la última ilusión publicada por Sugihara en su web, el techo del garaje ambiguo.

El moho es capaz de aprender y recordar

Decía Einstein que quien disfruta desfilando al son de la música no necesita un cerebro, ya que le basta con una médula espinal. Como ignoro en qué contexto lo dijo, no sé hasta qué punto pretendía o no resultar ofensivo ni hacia quiénes en concreto, pero lo cierto es que la afirmación es tan lúcida como merece, viniendo de quien viene: no todas las funciones que dependen del sistema nervioso están controladas por el cerebro. Y en efecto, para algunas de ellas basta con una médula espinal; por ejemplo, el patrón rítmico de la marcha.

Pero incluso más acá de las neuronas hay todo un mundo molecular capaz de desarrollar funciones básicas que tradicionalmente hemos entendido como típicas de algo parecido a un cerebro y, por tanto, exclusivas de los organismos que lo tienen. El descubrimiento de las capacidades cognitivas de las plantas, incluyendo la memoria, como conté aquí unos días atrás, está llevando a muchos científicos a abrir el concepto de inteligencia a otras formas de vida que no tienen neuronas, pero que llevan a cabo algunos de los cometidos de estas utilizando otros tipos de células. Si, como afirma una teoría, la memoria a largo plazo pudiera residir en los priones, proteínas infecciosas que saltaron a la infamia por culpa del mal de las vacas locas, todos los organismos que los poseen podrían expresar alguna forma evolutiva de memoria.

Y no solo: en 2008, un sorprendente experimento mostró que las bacterias son capaces de imitar a aquellos famosos perros de Pavlov que comenzaban a salivar al presentarles el estímulo que habían aprendido a asociar con la comida. Tradicionalmente se habla del sonido de una campana, aunque parece que esto podría formar parte de la leyenda popular.

La bacteria Escherichia coli, el ratón microbiano de los laboratorios, altera su metabolismo cuando se encuentra dentro del tubo digestivo para adaptarse a la ausencia de oxígeno. La falta de aire en esta situación viene acompañada por otra condición ambiental, una temperatura mayor que la del exterior. Tres investigadores de la Universidad de Princeton (EEUU) demostraron que es posible enseñar a las bacterias a prepararse para la vida sin oxígeno. Una vez entrenadas de esta manera, bastaba con subir la temperatura de los cultivos de 25 a 37 ºC para que cambiaran su metabolismo anticipando la falta de aire.

Hay una diferencia importante con los perros de Pavlov. Estos fijan lo aprendido mediante el refuerzo de conexiones neuronales, del mismo modo que hacemos nosotros para almacenar un recuerdo. En cambio, las bacterias aprenden a lo largo de muchas generaciones, siguiendo un camino evolutivo que las lleva a desarrollar una respuesta. Pero el concepto no es tan diferente: las bacterias aprenden retocando y reforzando conexiones entre distintos genes de su cromosoma. Y una vez que han adquirido esta capacidad, entran en modo anaerobio con solo simular la entrada en la boca aumentando la temperatura; ya saben lo que viene después.

¿Qué diablos es eso? El moho mucilaginoso 'Physarum polycephalum'. Imagen de Wikipedia.

¿Qué diablos es eso? El moho mucilaginoso ‘Physarum polycephalum’. Imagen de Wikipedia.

La última sorpresa sobre las capacidades de aprendizaje y memoria en organismos sin cerebro nos llega ahora por parte de un moho. Physarum polycephalum es lo más parecido a un vómito que podemos encontrar sin serlo. Pertenece a los mohos mucilaginosos o mucosos, un nombre con el que se conoce a varios grupos de organismos que antes solían clasificarse como hongos y que hoy se encuadran en el reino Protista, el de los protozoos.

Si algo tienen en común los mohos mucilaginosos es lo que podría decir cualquiera que se topara con uno de ellos: ¿qué diablos es eso? Para los aficionados al terror de serie B, un famoso pariente de ficción sería el protagonista de la película The Blob. Uno de los más conocidos y estudiados en el laboratorio es Physarum polycephalum, una masa amarillenta que suele crecer en la materia vegetal en descomposición, en zonas húmedas y sombreadas.

Physarum polycephalum es un microbio, algo parecido a una ameba, aunque enormemente peculiar. Tiene un ciclo de vida complejo, y durante una parte de él forma inmensas células con muchos núcleos y un solo cuerpo. Pero uno de los campos de investigación sobre este blob no estudia su fisiología puramente mecánica, sino lo que es capaz de hacer. Y en esto deja atrás al clásico circo de pulgas.

En 2010, a un equipo de investigadores japoneses se le ocurrió la delirante idea de construir una réplica de Tokio y sus alrededores, poniendo comida para Physarum en las 36 poblaciones circundantes para estudiar cómo este organismo conectaba los distintos núcleos. El resultado fue que el blob reprodujo con bastante fidelidad la red ferroviaria de Tokio, optimizada durante años por ingenieros. Y aún hay más: experimentos similares pusieron al blob a rediseñar las redes de autopistas de Inglaterra y de la Península Ibérica. En este último caso, los resultados fueron curiosos: Physarum reprodujo siete de las once principales vías romanas que existían en la península en el año 125.

El más difícil todavía nos llega ahora por parte de investigadores franceses y belgas. Los científicos situaron a la masa amarilla ante un desafío: cruzar un puente de agar (una especie de gelatina utilizada en los cultivos) para alcanzar la comida. Esto no representaba ningún problema para Physarum, a no ser que los investigadores envenenaran el camino con dosis molestas, pero no letales, de quinina o cafeína, que no le gustan nada. Al principio se mostraba reacio a cruzar, pero pronto aprendía que no había ningún peligro y atravesaba el puente casi con la misma facilidad que los controles.

Después de esta habituación, los investigadores retiraron los estímulos negativos, la quinina y la cafeína, durante dos días, para que olvidaran. Y así ocurría con la quinina: cuando después de los dos días de recuperación se les presentaba de nuevo esta sustancia, se comportaban como en la primera ocasión. Sin embargo, no era así en el caso de la cafeína; el blob que ya había sorteado antes esta amenaza aún recordaba que podía cruzar sin peligro, y lo hacía más rápidamente que otros no habituados antes a este obstáculo.

Sobre los mecanismos celulares que dirigen este aprendizaje, de momento los científicos solo pueden especular; no era el objetivo de este trabajo. Pero según escriben en su estudio, publicado en la revista Proceedings of the Royal Society B, hay una conclusión que nos empuja una vez más a abandonar nuestro concepto neurocéntrico de la inteligencia: “Muchos de los procesos que podríamos considerar rasgos fundamentales del cerebro, como la integración sensorial, la toma de decisiones y, ahora, el aprendizaje, se han demostrado todos ellos en estos organismos no neurales”.

Hipótesis: las plantas recuerdan el invierno gracias a los priones

Estamos aprendiendo a mirar a las plantas de otra manera. En ciencia nos gusta volver la vista atrás hacia los clásicos para descubrir que algunos genios de la antigüedad ya habían intuido lo que hoy estamos redescubriendo. Pero en este caso hay que quitarle la razón a Aristóteles cuando diferenciaba a los animales de las plantas por el hecho de que estas últimas carecen de percepción.

Una flor de 'Arabidopsis thaliana'. Imagen de Wikipedia.

Una flor de ‘Arabidopsis thaliana’. Imagen de Wikipedia.

Las plantas tienen un complejo sistema de cognición que solo hemos empezado a conocer en los últimos años. Poseen más sentidos que nosotros, procesan la información recibida, se comunican con sus semejantes y con otras especies, y en función de todo ello toman decisiones. Son inteligentes, y los científicos que trabajan en el nuevo y revolucionario campo que denominan neurobiología vegetal aconsejan abandonar nuestros conceptos neurocéntricos cuando nos referimos a una cualidad muy extendida en el mundo vivo llamada inteligencia. Las plantas no tienen mente, como también carecen de otros de nuestros sistemas, pero esto no implica que no puedan hacer muchas de las mismas cosas que nosotros hacemos empleando soluciones evolutivas diferentes.

Entre estas nuevas y sorprendentes capacidades de los vegetales descubiertas en los últimos años está la memoria. Las plantas recuerdan condiciones climáticas pasadas y ataques de herbívoros, y sus respuestas actuales vienen condicionadas por esos hechos del pasado. Pero ¿cómo lo logran? Como ya expliqué ayer, aún ni siquiera sabemos con toda claridad cómo nosotros somos capaces de mantener una memoria a largo plazo. Como decía un estudio que cité ayer sobre los mecanismos de la memoria en la mosca Drosophila, “una vieja incógnita en el estudio de la memoria a largo plazo es cómo el rastro de un recuerdo persiste durante años cuando las proteínas que iniciaron el proceso se reciclan y desaparecen en cuestión de días”.

Y como expuse ayer, una nueva hipótesis propone que en esto tienen algo que ver los priones, proteínas que conocemos como agentes patógenos en el mal de las vacas locas y su variante humana, pero que como moléculas capaces de perpetuarse tienen el don de la eterna juventud. Ayer mencioné como ejemplo las moscas y la liebre de mar Aplysia. Pero este último caso no se estudió directamente en el molusco, sino que se extrajo su proteína y se analizó en la levadura.

¿Por qué en la levadura? Estos hongos unicelulares son muy utilizados como organismos de laboratorio porque sus células se parecen a las nuestras y es muy fácil cultivarlos. Pero es que además, las levaduras también tienen priones. De hecho, fue con un prión de levadura como se demostró por primera vez que estas proteínas se comportan como agentes infecciosos sin ningún tipo de material genético, algo que parecía imposible.

En las levaduras fue también donde empezó a demostrarse que los priones no son siempre tan malvados como el de las vacas locas. De hecho, los priones de las levaduras se descubrieron como factores heredables que no pasan por el genoma y que confieren ciertas ventajas frente a condiciones ambientales adversas. Durante años se pensó que esto era un raro efecto en las levaduras cultivadas en laboratorio, pero en 2012 la investigadora del Instituto Whitehead de Cambridge (EEUU) Susan Lindquist demostró que las levaduras en la naturaleza utilizan los priones como mecanismo habitual de herencia de ventajas adaptativas.

Lindquist es pionera en la investigación de los priones y en su posible función en la memoria. Suyo es el descubrimiento de que este es un mecanismo de herencia en levaduras, y fue también coautora del trabajo que demostró el carácter priónico de la proteína de la liebre de mar implicada en la memoria. Tal como hizo al probar la proteína del molusco marino en las levaduras, recientemente se ha fijado en otro gran dominio de los seres vivos en el que aún se desconoce por completo la posible existencia de priones. Y así regresamos a las plantas.

¿Tienen priones las plantas? Y si es así, ¿con qué fin? Para responder a estas preguntas, Lindquist y sus colaboradores repasaron las secuencias ya conocidas de multitud de proteínas de la planta Arabidopsis, el ratón vegetal de los laboratorios. De todas ellas, se quedaron con 474 que parecían contener secuencias típicas de los priones. De estas, a su vez, eligieron tres que en la planta participan en el mecanismo de floración, un proceso regulado por factores internos y externos.

Levaduras cultivadas en el experimento de Lindquist. El tono más claro (4) indica mayor actividad priónica. Imagen de PNAS.

Levaduras cultivadas en el experimento de Lindquist. El tono más claro (4) indica mayor actividad priónica. Imagen de PNAS.

Y con estas tres proteínas, ¡a las levaduras! Lindquist y su equipo insertaron las proteínas en el hongo y a continuación estudiaron cómo se comportaban. El resultado del estudio, publicado en PNAS, es que al menos una proteína llamada Luminidependens (LD) cumple a la perfección el perfil de un prión, con toda la pinta de poseer una función biológica concreta en las plantas. Esto da respuesta a la primera pregunta: sí, las plantas tienen priones. En esto tampoco son diferentes de otros organismos estudiados, incluidos nosotros.

La respuesta a la segunda pregunta aún es una incógnita. La levadura permite determinar si una proteína extraña a ella es un prión, aunque no sirve para estudiar su función natural; esto habrá que determinarlo en la misma planta. Pero Lindquist eligió proteínas implicadas en la floración por un motivo: su hipótesis es que los priones también actúan como memoria molecular en las plantas. El fin del invierno dispara la señal de la floración, pero las plantas son capaces de distinguir entre la estación prolongada y una sola noche de frío ocasional durante la primavera; de alguna manera, conservan una memoria a largo plazo del invierno una vez que ha terminado.

Y esta memoria a largo plazo de las plantas, sospecha Lindquist, podría residir en los priones, del mismo modo que estas proteínas parecen intervenir en el mantenimiento de nuestros recuerdos. En su estudio, la investigadora y sus colaboradores escriben: “Aún deberá determinarse si la proteína LD experimenta un cambio conformacional priónico y biológicamente significativo que desempeñe un papel en la decisión de la floración en las plantas”. Seguro que este trabajo ya está en marcha. Y si llega a demostrarse que los priones actúan como mecanismo universal de memoria, no solo se rifará un Nobel, sino que habrá una razón más para mirar a las plantas de otra manera. Aristóteles no daría crédito.

¿Y si nuestros recuerdos fueran priones (como los de las vacas locas)?

¿Cómo es posible que recordemos algo ocurrido hace diez, veinte, treinta, cuarenta años? A veces lo más simple para nuestra experiencia diaria es lo más complicado de explicar desde el punto de vista biológico: ¿qué rastro tangible queda hoy en nuestro organismo de aquel episodio de cuando teníamos seis años?

El conocimiento de hoy dicta que los recuerdos a largo plazo se almacenan gracias a cambios en el sistema neuronal con capacidad de perpetuarse, como nuevas proteínas y conexiones sinápticas. Pero ¿cómo se mantienen activas estas conexiones durante años, cuando el estímulo que las provocó lleva largo tiempo desaparecido? La memoria a largo plazo es una especie de fantasma molecular cuya capacidad de persistencia aún esconde muchos secretos.

Eso, una vaca. Imagen de dominio público / Pixabay.

Eso, una vaca. Imagen de dominio público / Pixabay.

En los últimos años está tomando forma una teoría arriesgada, como todo lo nuevo, pero brillante y plausible, como todo lo nuevo que acaba triunfando. Según esta idea, la memoria puede persistir a largo plazo gracias a los priones. Recordemos la famosa encefalopatía espongiforme bovina, el “mal de las vacas locas” que se transmitía a los humanos a través del consumo de tejidos animales contaminados. Las responsables de esta enfermedad son unas proteínas peculiares que actúan como los zombis de la cultura popular, destruyendo, sembrando el caos y convirtiendo a otros en lo mismo que ellos.

En el caso de los priones, se trata de proteínas peligrosamente mal conformadas que además son capaces de transmitir esta configuración errónea a otras. El resultado es que actúan como agentes infecciosos, extendiendo sus efectos patológicos a otras zonas sanas. Estos efectos normalmente consisten en pegarse unas a otras formando bloques que inutilizan las células y las destruyen. Los humanos tenemos una forma propia de encefalopatía similar a la que provocaba el consumo de animales enfermos, la Enfermedad de Creutzfeldt-Jakob. En las tribus caníbales de Papúa Nueva Guinea se documentó otra forma similar llamada kuru. Las ovejas tienen su propia versión, el scrapie o tembladera.

Como ya conté aquí, los priones son una especie de Cuarto Milenio de la biología. Durante años los biólogos se frotaban los ojos de incredulidad ante la hipótesis de que existían agentes infecciosos capaces de propagarse y transmitirse de persona a persona (o más genéricamente, de animal a animal) sin ningún tipo de material genético, compuestos solo por proteínas que proceden de nuestros propios genes, y que por algún motivo y mecanismo pueden volverse locas y llegar a matarnos. Pura ciencia ficción de serie B. Pero lo bueno o malo de la ciencia, según para quién, es que tampoco se calla cuando lo que tiene que decirnos no va a gustarnos nada. Y aunque los priones fueran en sus inicios una especie de herejía biológica, ahí están.

No solo están, sino que posiblemente en el futuro adquieran mayor protagonismo en campos hasta ahora insospechados. Últimamente vienen acumulándose indicios de que los priones podrían estar implicados en otras enfermedades neurodegenerativas como el alzhéimer (con lo que esto conlleva de que puedan transmitirse). Pero los priones aún tienen mucho por revelar, y casi en el primer puesto figura una pregunta: ¿qué hemos hecho nosotros (biológicamente hablando) para merecer esto (un peligro mortal oculto en nuestros propios genes)? ¿Qué sentido evolutivo tiene su existencia? ¿Lo tiene?

Una posibilidad es que los priones no solo existan para amargarnos la vida, sino que originalmente hayan sobrevivido a los hachazos de la evolución porque en realidad aportan otras funciones beneficiosas, y que hasta ahora solo hayamos conocido lo peor de ellos, su faceta destructora. Pero ¿qué funciones beneficiosas?

Y así volvemos a la memoria. Si se trata de conservar un recuerdo a largo plazo que no puede guardarse en la caja fuerte del material genético, ¿qué mejor que encargárselo a una proteína capaz de perpetuarse? Así es como está naciendo la idea de que los priones puedan ser una especie de guardianes de la memoria.

En 2003, tres investigadores en EEUU descubrieron que al transferir a las levaduras una proteína neuronal de la liebre de mar Aplysia llamada CEPB, dicha molécula se comportaba como un prión, pero en este caso la forma mala era la buena; es decir, la conformación capaz de perpetuarse era precisamente la que le permitía realizar su función. Los tres científicos lanzaron esa arriesgada y brillante hipótesis: “Proponemos que la conversión de CPEB a un estado de prión en las sinapsis estimuladas ayuda a mantener los cambios sinápticos a largo plazo asociados al almacenamiento de memoria”.

Otros estudios han venido a darles la razón. En 2012, investigadores del Instituto Stowers de Kansas City (EEUU) revelaron que Orb2, un tipo de proteína CPEB propio de la mosca Drosophila, se acumula en las sinapsis neuronales y ayuda a mantenerlas activas. Cuando se suprime la función de Orb2, las moscas pierden la memoria a largo plazo.

Y sobra decirlo, las proteínas CEPB están presentes en muchos otros organismos, incluidos nosotros. Todavía no sabemos hasta qué punto ese recuerdo del colegio puede depender de un ente biológico que hasta hace poco conocíamos solo por el brote de una oscura y amenazadora enfermedad a comienzos de este siglo, y que pasó además a la historia de las hemerotecas por las poco afortunadas declaraciones de una ministra de Sanidad. Pero sí sabemos que, en las levaduras, los priones conservan una memoria molecular que permite a estos hongos unicelulares sobrevivir a condiciones ambientales adversas.

Ahora sabemos algo más, y no menos sorprendente. Mañana contaré un nuevo estudio que nos descubre cómo los priones también podrían servir para conservar la memoria en seres a los que, para empezar, muchos ni siquiera les sospecharían la cualidad de tener recuerdos.

El olor del pasado nos ayuda a recordarlo

Cuando Proust escribió el famoso pasaje de la magdalena, el té y el torrente de recuerdos que inundaba la mente del narrador, estaba haciendo algo más que crear un recurso literario: el autor plasmaba una filosofía del tiempo y la memoria que tradicionalmente se ha vinculado con el pensamiento de su coetáneo y conocido Henri Bergson. El filósofo explicaba que la memoria de las experiencias pasadas, con toda su carga emocional, se recuperaba a través de los estímulos primarios de los sentidos. Como el sabor de la magdalena y el té.

Imagen de Dennis Wong / Flickr / Creative Commons.

Imagen de Dennis Wong / Flickr / Creative Commons.

El tiempo ha dado la razón a Bergson en algunos aspectos, aunque tal vez Proust debería haberse referido más bien al olor de la magdalena, y no a su sabor. El olfato y el gusto son dos sentidos que entran en juego al mismo tiempo cuando comemos o bebemos, pero es sobre todo el primero el más rico en matices. Solo percibimos cinco tipos de sabores (puede que seis), mientras que el repertorio olfativo es inmenso incluso para una especie de nariz torpe como los humanos. El número de olores diferentes que podemos detectar prácticamente no tiene límite, y ni siquiera tenemos nombres específicos para ellos: los llamamos por aquello que los produce.

Lo poco que todavía conocemos el olfato se revela en algo sorprendente que hemos sabido en los últimos años: los receptores de olor no solo están presentes en la nariz, sino también en otros órganos y tejidos como el tubo digestivo, músculo, corazón, páncreas, hígado, pulmón y piel. Incluso, al menos en los ratones, hay receptores de olor en los testículos. ¿Para qué? Aún no está muy claro. Pero lo que sí conocemos es la capacidad evocadora de los olores, como ya intuyó Bergson. Como al narrador de Proust, son capaces de traernos a la memoria recuerdos muy remotos junto con los sentimientos que los acompañan, y sin la interferencia de un relato verbal.

Esto último se apoya también en otro rasgo único del olfato: mientras que la información de los demás sentidos pasa por una especie de estación intermedia, el tálamo, antes de dirigirse hacia las sedes del cerebro donde se procesa, los olores entran directamente y sin escalas desde el epitelio de la nariz hacia su destino, el bulbo olfatorio. A nivel práctico, esto se traduce para nosotros en que el olfato tiene ese carácter intuitivo y primario, algo que se refleja también en el lenguaje: me da en la nariz…

La relación entre olfato y memoria ha sido explotada por los científicos para estudiar cómo se forman nuestros recuerdos, cómo se reactivan y cómo se almacenan a largo plazo. Hoy sabemos que las memorias se forman en el hipotálamo, y que durante el sueño se trasladan a la corteza cerebral donde se consolidan como recuerdos a largo plazo. Y los olores ayudan a esta consolidación, como demuestra un nuevo estudio de la Universidad de Montreal (Canadá).

Otras investigaciones han explorado el papel de los estímulos durante el sueño en la formación de la memoria. Aunque aquel mito del aprendizaje de conocimientos escuchando durante el sueño que planteaba Huxley en Un mundo feliz hoy no parece factible, sí es cierto que la reactivación de los recuerdos durante el sueño a través de ciertos estímulos puede ayudar a reforzar el aprendizaje en algunos casos.

Y en esto el olfato tiene una ventaja: “El tálamo sirve en parte como una puerta de acceso de información que se cierra parcialmente durante el sueño, para que podamos dormir sin interferencias de los estímulos que nos rodean”, me cuenta el primer autor del estudio, Samuel Laventure. Pero como ya hemos dicho, el olfato no pasa por el tálamo. “Esto sugiere que la estimulación olfativa durante el sueño puede ser particularmente eficaz en comparación con la auditiva”.

Los investigadores sometieron a un grupo de voluntarios al aprendizaje de ciertas tareas motoras al mismo tiempo que se les presentaba un estímulo olfativo, olor a rosas. A continuación comprobaron cómo los sujetos recordaban lo aprendido al día siguiente, después de una noche de sueño. Los resultados muestran que el aprendizaje se reforzaba cuando a los voluntarios se les presentaba durante el sueño el mismo olor a rosas que estaba presente durante el experimento. Se supone que la presentación del estímulo reactiva el recuerdo, ayudando en el proceso de consolidación de la memoria transitoria en el hipotálamo como memoria a largo plazo en el córtex.

Además, los investigadores comprobaron que esta estimulación olfativa durante el sueño funcionaba cuando se aplicaba en la fase 2 del sueño no-REM/MOR (NREM2), que se ha asociado previamente a esta consolidación de la memoria. Laventure precisa que “los procesos de consolidación de la memoria motora se producen en gran medida, pero no exclusivamente, durante el sueño NREM2”. El estudio, publicado en la revista PLOS Biology, muestra además que la estimulación olfativa deja en el encefalograma una firma típica de la consolidación de la memoria, un patrón de ondas cerebrales llamado husos del sueño (sleep spindles). “Solo la estimulación durante NREM2 produjo cambios significativos en los husos del sueño”, aclara el coautor del estudio.

El trabajo de Laventure y sus colaboradores se refiere solo a la memoria motora, no a la declarativa, la que asociamos con los recuerdos. Pero otros estudios sugieren que también es posible reactivar este tipo de memorias mediante estímulos recibidos durante el sueño, mientras el olfato permanece activo, siempre dispuesto a llevarnos de viaje al pasado en busca del tiempo perdido.

Tonterías que se dicen: la inteligencia se hereda de la madre

Desmontar un titular bonito nunca luce; es como recoger la casa después de una fiesta. El problema es que internet ofrece a cualquier aseveración acientífica o seudocientífica el título de verdad por un día, engordando por un mecanismo de reacción en cadena. Y como en los terremotos, luego quedan las réplicas, retroalimentadas por un mecanismo circular típico de las seudociencias.

Los que tenemos como profesión contar la ciencia tenemos dos maneras de tomarnos estos casos: una, en *modo ironía*; otra, en *modo gravedad*, como si se estuviera atacando algún principio sagrado, lo que nos convierte en antipáticos inquisidores modernos. No es agradable ni para uno mismo. El problema es que, con tan buenos y buenas periodistas de ciencia en paro (me consta), leer barbaridades escritas sin el menor criterio ni conocimiento sí agravia y ofende a quienes no reciben de los medios la confianza para poner ese buen criterio y conocimiento al servicio de la información y educación científica del público.

Imagen de J. Y.

Imagen de J. Y.

Esta entradilla viene a cuento de un artículo sobre el que me ha alertado mi amiga y vecina de blog Madre Reciente, publicado en la web guiainfantil.com y titulado “La inteligencia se hereda de las madres”. Después de leerlo casi he tenido que ser atendido de urgencias (modo ironía).

El artículo en cuestión sostiene que la madre, más que el padre, transmite a sus hijos los genes relacionados con el “cociente intelectual”, ya que “el gen de la inteligencia se encuentra en el cromosoma X” y “como la madre aporta dos cromosomas X (XX), tendría el doble de posibilidades de transmitirla”. Por el contrario, del padre se heredan las emociones. La inteligencia, prosigue el artículo, se hereda en un 60%, y luego lleva un impuesto de sucesiones del 40% (perdonen, se me escapa el modo ironía).

El artículo cuenta también un experimento con ratones afirmando que se crearon animales con “más genes paternos o maternos”, que estos últimos tenían el cerebro más grande, y que el cerebro tiene, como en la maravillosa película Del revés, dos islas, una de “la alimentación, la supervivencia y el sexo”, y otra de “el desarrollo del lenguaje, la inteligencia, el pensamiento y la planificación”. Y parece que las células, según tengan más genes paternos o maternos, van a una isla o a la otra.

Quiero aclarar que esto no pretende ser un ataque personal contra la autora del artículo, cuya competencia profesional no cuestiono en materias ajenas a la ciencia. Estoy seguro de que yo escribiría barbaridades del mismo calibre si tuviera que escribir un artículo sobre fútbol, tenis o Fórmula 1. Más bien la responsabilidad es del medio, de ese y de tantos otros, que prescinden de los especialistas pensando que todo el mundo puede escribir sobre ciencia simplemente copiando lo que dicen otras webs, fomentando esa reacción en cadena de la que hablaba. También soy periodista y conozco la presión a la que estamos sometidos, pero nunca debemos permitir que esta presión llegue a quebrantar la ética periodística que esconde un titular.

Como decía Bilbo Bolsón, ¿por dónde empezar? ¡Ah, sí! Comencemos por la premisa inicial, la que según el artículo la ciencia “afirma y confirma”: que el “gen de la inteligencia” se encuentra en el cromosoma X, como al parecer “demostró” el científico estadounidense Robert Lehrke.

¿Quién era Robert Lehrke? Apenas se encuentra información sobre Robert Gordon Lehrke, psicólogo clínico del Hospital Estatal de Brainerd, en Minnesota, que en 1968 leyó su tesis doctoral titulada Sex-linked mental retardation and verbal disability (Retraso mental ligado al sexo y discapacidad verbal). Su área de especialización fue lo que entonces se llamaba “retraso mental”. Más allá de su tesis doctoral, que luego se editó en formato de libro, Lehrke apenas dejó un par de estudios publicados, dado que no era un investigador, sino un facultativo. Uno de ellos, un estudio teórico, apareció en 1972 en la revista American Journal of Mental Deficiency, bajo el título “Theory of X-linkage of major intellectual traits” (teoría de vínculo al cromosoma X de rasgos intelectuales principales).

Dado que se trataba solo de una hipótesis sin ninguna demostración, el artículo de Lehrke fue publicado junto con comentarios de otros tres expertos, a los que el propio psicólogo también respondía. Su propuesta resumía el trabajo de su tesis. Trabajando con pacientes con discapacidad mental, había observado un mayor número de hombres que de mujeres en esta población. Examinando un caso descrito en 1943 por Martin y Bell de una familia en la que la discapacidad mental afectaba solo a los hombres, y añadiendo sus propias observaciones, Lehrke propuso que el cromosoma X contenía uno o varios genes cuyas mutaciones producían “retraso mental”.

Y de hecho, en esto Lehrke estaba en lo cierto. En esto (y solo en esto, como voy a explicar) su intuición fue visionaria, ya que posteriormente se han identificado hasta 70 síndromes de discapacidad mental ligados al cromosoma X, según una revisión de 2005. Uno de los más conocidos es el Síndrome X Frágil, la segunda causa genética más frecuente de discapacidad mental después del Síndrome de Down, y la enfermedad del caso de Martin y Bell.

Pero en referencia al artículo citado y a otros que probablemente le han servido de inspiración, lo curioso es que sus autores se pasmarían si supieran qué era en realidad lo que Lehrke defendía, porque era justo lo contrario de lo que suponen. Por plantear un símil bastante bestia, lo reconozco, pero también muy intuitivo, sería como si una persona judía se basara en la ciencia nazi para justificar que ellos son diferentes. Lo explico.

La única que parece escribir sobre el trabajo de Lehrke habiéndolo leído antes es Anne Fausto-Sterling, bióloga y genetista estadounidense que ha dedicado su larga y premiada carrera a las cuestiones de género, sobre todo a derribar las falacias presuntamente científicas sobre los roles de ambos sexos. En su libro Myths of Gender: Biological Theories about Women and Men (Los mitos de género: teorías biológicas sobre las mujeres y los hombres), Fausto-Sterling atacaba el machismo de la teoría de Lehrke cuando este afirmaba que, del mismo modo que había más hombres con discapacidad mental, también había mayor proporción de genios, ya que en las mujeres la inteligencia se promediaba entre ambas copias de su cromosoma X, dando como resultado un nivel intelectual medio inferior. No se pierdan lo que Lehrke escribía:

Es altamente probable que factores genéticos básicos, y no el chovinismo masculino, expliquen al menos en parte las diferencias en el número de hombres y mujeres en los puestos que requieren los más altos niveles de capacidad intelectual.

Resumo: Lehrke pensaba que había una razón genética para que las mujeres, según él, estén menos capacitadas de cara al desempeño de trabajos intelectuales. Así, la reformulación correcta del titular del trabajo de Lehrke sería que los hombres heredan la inteligencia de sus madres, y las mujeres heredan la falta de ella.

Pero naturalmente, Lehrke estaba completamente equivocado, como bien se encarga Fausto-Sterling de argumentar aportando datos de la ciencia actual. El problema de Lehrke (aparte de la inevitable sospecha de que trataba de sostener un prejuicio propio) era que extendió sus conclusiones mucho más allá de lo que sus observaciones le permitían. Una cosa es que el cromosoma X contenga ciertos genes cuyas alteraciones provoquen discapacidad mental. Pero de ahí a pensar que ciertas variantes de esos mismos genes le hagan a uno más listo no solo es aventurado, sino que es erróneo. Imaginen un gen críticamente implicado en el desarrollo del ojo. Sus mutaciones podrían resultar en malformaciones, pero esto no significa que algunas formas de ese gen puedan producir ojos más perfectos, más grandes o en mayor número. Simplemente, si el gen funciona como debe, se producen ojos.

El motivo por el que hay más discapacidades mentales en los hombres es el mismo por el que hay más de cualquier otro trastorno ligado al cromosoma X: las mujeres tienen un backup, un segundo cromosoma X que suple las funciones si hay genes alterados. No es que, como dice el artículo, “como la madre aporta dos cromosomas X (XX), tendría el doble de posibilidades de transmitir” nada; no hay una lotería con un bombo en el que se meten dos bolas de un cromosoma para ver si así toca más fácilmente. La madre aporta (siempre) un (y solo un) cromosoma X; en el caso de las niñas, el padre aporta otro. Pero los hombres no tenemos ese backup, por lo que muchas enfermedades genéticas ligadas al X, como la hemofilia, se manifiestan en hombres, mientras que las mujeres son solo portadoras asintomáticas.

Pero además, no existe el gen de la inteligencia, ni varios. Como tampoco hay un gen de la simpatía o del gusto por la danza clásica. Solo unos pocos rasgos parecen (cada vez menos según avanza la investigación genética) ligados a un solo gen. El resto, sobre todo rasgos complejos como la (si es que alguien es capaz de definirla) inteligencia, dependen de muchísimos genes con una interdependencia enormemente compleja. Un gen no produce pelo rubio, orejas grandes o nariz respingona; los genes solo producen proteínas. Y estas participan en multitud de procesos del organismo que interactúan entre sí a través de redes inmensamente complicadas de cascadas bioquímicas, moduladas además por la influencia del entorno en el sentido más amplio, y que resultan en lo que conocemos como fenotipos.

En cuanto al asunto de los porcentajes, a lo largo del siglo XX se desató en la comunidad científica un debate heredado desde el darwinismo llamado Nature versus Nurture, o innato contra adquirido, destinado a determinar cuál era la parte de un rasgo complejo, como las conductas, atribuible a la genética, y cuánto era causado por el ambiente. Este debate se considera hoy abandonado porque la naturaleza de esos rasgos es demasiado compleja incluso individualmente, y más aún con la irrupción de la epigenética que determina la función génica según modificaciones químicas del ADN no codificadas en la secuencia. Hoy se considera que el debate no tiene sentido porque es seudocientífico, es decir, no hay una respuesta demostrable (o más bien falsable); cualquier afirmación que encuentren por ahí sobre porcentajes genéticos y ambientales pertenece al territorio de la autoayuda y la charlatanería, pero no al de la ciencia.

Frenología. Imagen de Wikipedia.

Frenología. Imagen de Wikipedia.

Me quedaría comentar el relato que hace el artículo del experimento de los ratones, pero creo que ya me he extendido demasiado por hoy y que el asunto ha quedado suficientemente claro. Baste decir que, ¡por favor!, la película Del revés, aunque magnífica, era solo eso, dibujos animados; en realidad la tristeza no es un muñequito azul con jersey de cuello vuelto. El cerebro no tiene islas. No hay un trozo de cerebro que podamos poner encima de la mesa y decir: ahí está el sexo, o la soledad. Ojalá: si una persona sufriera un traumatismo encefálico grave, como un disparo en la cabeza, el médico podría decir a los familiares del paciente: “Ha tenido suerte porque solo le ha afectado a la región de la planificación; no podrá volver a hacer planes en el resto de su vida, pero por lo demás estará estupendamente”.

Y naturalmente, tampoco el tamaño del cerebro tiene absolutamente nada que ver con la inteligencia. Tamaño y áreas discretas fueron las bases de una teoría del siglo XIX llamada frenología que fue desacreditada en el XX. Ironías del destino, tras la muerte de su impulsor principal, el alemán Franz Joseph Gall, el análisis de su cerebro reveló que su tamaño era inferior a la media, como también era más pequeño de lo normal el de Albert Einstein.

En resumen, la inteligencia se hereda en parte de la madre, en parte del padre, en parte se ve afectada por innumerables factores ambientales, y en parte se desarrolla con esfuerzo y ejercicio mental, aunque nadie puede ni podrá jamás determinar en qué partes; ni en general, ni individualmente. Y en cuanto al artículo, y recordando aquel curso de ética periodística que hace unos años impartía Juanjo de la Iglesia en el Caiga quien caiga, el titular adecuado habría sido “las discapacidades mentales están más frecuentemente ligadas al cromosoma X”. Claro que este titular no solo es algo ya conocido desde hace casi medio siglo, sino que tampoco tendría tantos retuits.

¿Saben aquel de la señora que es ciega, pero que ve si cambia de personalidad?

La pasada semana, Mariano Rajoy y Pablo Iglesias se reunieron en secreto para concretar el pacto de gobierno que Podemos y el PP firmarán después de las elecciones con vistas a sumar entre ambos una mayoría absoluta parlamentaria.

Tranquilos, no me he vuelto loco. Estoy seguro de que ninguno de ustedes ha creído una palabra de lo anterior. Ningún lector concedería la menor veracidad a una historia semejante y ningún medio se haría eco de ella. Incluso si yo osara insistir en que es cierta y presentara documentos para avalarlo, estos serían cuestionados y analizados antes de llegar a otorgarles la más mínima credibilidad; y si algún medio se atreviera a mencionar el asunto, lo haría con todas las reservas y salvaguardas. Todo ello, porque sencillamente va en contra de la lógica política, de las reglas del juego e incluso de nuestra experiencia del mundo real.

Entonces, ¿por qué no hacemos lo mismo en cuestiones de ciencia? Hoy recojo aquí un tema que me sopló por teléfono una informante muy próxima, y que de buena mañana me hizo reventar las legañas en las comisuras de los ojos: cuentan por ahí la historia de una señora que es ciega, pero que tiene (podríamos decir, la enorme ventaja de disponer de) personalidades múltiples, y con algunos de esos avatares goza de una visión que ni el mismísimo Afflelou.

Imagen de Garretttaggs55 / WIkipedia.

Imagen de Garretttaggs55 / WIkipedia.

Una vez que he dominado las legañas, me entrego a internet y compruebo que, en efecto, bastantes medios están dando cuenta de la historia. Resumiendo: una mujer de 37 años identificada por las siglas B. T. sufrió un accidente hace años tras el cual fue perdiendo la vista hasta quedar completamente ciega. Resulta que la señora alberga dentro de su ser hasta diez personalidades distintas. Mientras estaba sometida a tratamiento, sus doctores descubrieron que, cuando toma el mando alguna de esas personalidades, recupera la visión. Los médicos midieron la actividad eléctrica en el córtex visual y comprobaron que existe o no, según que en ese momento la piel de la señora la ocupe una personalidad u otra, por lo que los doctores concluyen que existe un gating, una especie de control que deja pasar la señal desde el nervio óptico hasta el centro visual del cerebro alternativamente en función de cuál de los personajes esté pilotando. Todo ello se ha publicado en una revista llamada PsyCh Journal.

El problema que pretendo resaltar aquí es que, en cualquier medio que se pretenda serio, una información como esta no puede ofrecerse de manera totalmente acrítica, como ha estado ocurriendo. Si no estoy equivocado, la información apareció primero en la versión española de la BBC. El medio británico goza de un bien ganado prestigio en periodismo de ciencia. Pero curiosamente, la noticia solo aparece en la versión española.

Lo cierto es que la mayoría de los principales medios no han publicado la noticia, muy probablemente guiados por el criterio de que, cuando una historia es muy dudosa y no se tienen argumentos al respecto, lo mejor es mirar para otro lado. Tampoco es la postura más loable; al fin y al cabo se trata de un estudio publicado en una revista científica que describe un caso inédito en la historia de la ciencia, y si lo que dice fuera cierto, sus implicaciones serían revolucionarias.

Si fuera cierto. Pero claro, hay varios indicios sospechosos. Primero, el estudio se publica en una revista china de psicología. La única revista china de psicología de difusión internacional. ¿Por qué un hallazgo como este, jamás descrito antes en la literatura científica y radicalmente novedoso, no se publica en una de las primeras revistas médicas del mundo? ¿Será tal vez que ninguna de ellas se dignaría (¿se ha dignado?) siquiera a solicitar más experimentos a sus autores?

Segundo, y más extraño todavía, en el estudio aparece una nota aclarando que el trabajo es la traducción de otro anterior, lo cual es algo decididamente inusual y estrambótico. Quizá es solo una curiosa coincidencia, pero últimamente se diría que algunas revistas chinas de nueva creación o de reciente internacionalización están publicando estudios sospechosamente llamativos, como he comentado aquí anteriormente. Una revista científica no deja de ser un negocio, y muy rentable. Un estudio discutible y discutido genera visibilidad, difusión y dinero; ningún medio estaría refiriéndose a una revista china llamada PsyCh Journal si no fuera por este trabajo.

Tercero, el estudio asegura que la ceguera de la mujer es psicogénica, no fisiológica; es decir, que no existe ningún daño en sus ojos ni en su cerebro, que los médicos que diagnosticaron anteriormente su caso habían dado por hecho que debía de tener una lesión en el córtex visual al no haber encontrado otra posible causa, y que se habían equivocado. ¿En serio los médicos mandaron a su casa a una mujer que ha perdido la vista sin comprobar si, efectivamente, tenía una herida en el cerebro, simplemente suponiéndolo?

Cuarto, un viejo adagio en ciencia afirma que resultados extraordinarios requieren pruebas extraordinarias. En un caso como este los autores, Hans Strasburger y Bruno Waldvogel, deberían haber sometido a la mujer a infinidad de pruebas adicionales más allá de un simple test de salón de la actividad eléctrica en el córtex visual. Aún más, deberían haber reclutado la colaboración de otros expertos para que examinaran el caso desde distintos ángulos y replicaran independientemente sus propias mediciones. La pobre señora B. T. ya tiene bastante sufrimiento con su situación. Pero o se investiga hasta el final, o nada de esto resulta significativo de cara a su mejora.

Desde un punto de vista más general, si esto es tan difícil de creer como lo de Iglesias y Rajoy es por varias razones relativas a lo que la ciencia conoce hasta ahora, o no conoce. En primer lugar, dar por hecho que la señora tiene personalidades múltiples ya es pasarse de frenada. El anteriormente conocido como desorden de personalidad múltiple, hoy llamado Trastorno de Identidad Disociativo, ha dado grandes momentos al cine, desde Norman Bates y su madre hasta John Cusack encerrado en un motel con todos sus avatares. Pero muchos psiquiatras dudan de que realmente exista. Es, como mínimo, un trastorno controvertido. El hecho de que figure en la biblia de la psiquiatría, el Manual Estadístico y Diagnóstico de Desórdenes Mentales (DSM), no es suficiente aval para muchos profesionales; el director del Instituto Nacional de Salud Mental de Estados Unidos, Thomas R. Insel, reprochó al manual su “falta de validación científica”.

Las razones que esgrimen muchos especialistas para mantenerse escépticos es que el susodicho TID se ha probado falso en muchos pacientes. El trastorno se puso de moda en Estados Unidos en los años 80 a través de una oleada de casos que inspiraron la última película de Alejandro Amenábar, Regresión, y que se conocieron como Abuso Ritual Satánico (ARS) (recientemente escribí un reportaje sobre el tema). En los casos más mediáticos y llamativos se demostró que nunca existieron tales abusos y que el trastorno fue iatrogénico, es decir, provocado por la propia terapia. Dicho de otro modo, eran recuerdos implantados por los terapeutas. Y los más críticos suelen arrojar la sospecha de que quienes fundaron este trastorno y se especializaron en su tratamiento amasaron enormes cantidades de dinero gracias a él.

No solo el trastorno que Strasburger y Waldvogel dan por hecho es dudoso para muchos especialistas. La relación entre cognición y percepción, como la que parece justificar la dualidad de B. T. entre ciega y vidente, también ha alimentado mucho debate científico. Algunos estudios afirman, por ejemplo, que el hecho de llevar una mochila pesada a la espalda influye en nuestra percepción de las distancias a recorrer o de la inclinación de las pendientes (una revisión reciente aquí), o que la tristeza altera cómo vemos los colores. Pero estos resultados han sido duramente descalificados por otros expertos. Y aunque se han descrito anteriormente otros casos de ceguera sin ningún defecto fisiológico aparente, el concepto de enfermedad psicogénica tampoco goza de aceptación unánime.

En un caso como el de esta señora, la postura natural para un científico debería ser la de partir de la hipótesis nula, y abandonarla solo cuando una avalancha de pruebas se empeñara en gritarle al oído que no es válida. Por ilustrarlo con un ejemplo extremo, existe un trastorno llamado Síndrome de Cotard, cuyos afectados creen estar muertos. Si una persona entra en la consulta de un psiquiatra y la toma de contacto lleva al médico a sospechar que el paciente cree haber fallecido, nunca se le ocurriría practicarle un electroencefalograma para refutarlo. Pero si lo hiciera, ni siquiera un EEG plano llevaría al psiquiatra a considerar que está tratando a un zombi, antes de haber descartado absolutamente todas las hipótesis alternativas.

¿Y cuáles son? En primer lugar, la más obvia: que la señora esté fingiendo. Repasando la bibliografía científica, parece que algunas investigaciones demuestran la posibilidad de engañar a la máquina en los ensayos de potencial evocado como el que los investigadores han empleado con la paciente (por ejemplo aquí, aquí y aquí). Incluso en los casos en que se asegura que este análisis es en general fiable, los expertos sugieren que los resultados deben evaluarse en el contexto de un examen clínico más amplio. O en otras palabras, que no bastan para decidir fehacientemente si alguien ve o no ve.

Los expertos apuntan como uno de los defectos de estos ensayos que a veces la señal del potencial –es decir, la reacción de la corteza visual del cerebro– puede aparecer desfasada respecto al estímulo –el momento en que el ojo ve–; bien por una interferencia inducida por el método de medición, o bien por una deformación voluntaria de la señal provocada por el propio sujeto del experimento. Si este último fuera el caso de B. T., el resultado podría estar enmascarando una señal positiva en las situaciones en las que supuestamente es incapaz de ver.

Una de las posibles maneras de engañar a la máquina aparece de hecho mencionada en el estudio. Los autores apuntan la hipótesis de que algunas personas sean capaces de desenfocar voluntariamente la visión hasta el punto de anular la respuesta cerebral. Strasburger y Waldvogel no han refutado esta posibilidad. Como mínimo, habría sido lógico que extendieran su estudio para comprobar con otros sujetos si este efecto puede lograrse de forma voluntaria en las mismas condiciones experimentales.

En resumen, el caso es insólito e interesante, pero de acuerdo a la literatura publicada aún parecen quedar por delante muchas preguntas antes de afirmar a la ligera que una paciente con personalidades múltiples es ciega o vidente, según. Y en cualquier caso los medios no deberían tener miedo a informar de historias como esta, siempre que se haga desde un planteamiento crítico y escéptico.

¿Cómo ‘ven’ los animales el campo magnético terrestre?

Con todo lo listos y complejos que somos los humanos, solemos andar algo perdidos cuando se trata de capacidades que escapan a la experiencia de nuestra especie, pero que para otros organismos más simples son pan comido. Dado que aún no podemos comunicarnos con otras especies (pero no lo descarten), no pueden contárnoslo, y así nos resulta difícil describir, y no digamos comprender, cómo las feromonas guían a un macho hasta una hembra en celo, cómo las plantas se advierten unas a otras de un peligro, o cómo los animales con camuflaje activo adaptan los colores, los patrones y las texturas de su cuerpo para parecerse a lo que tienen alrededor.

Imagen digital del documental 'Winged Migration' (2001) mostrando un charrán ártico volando sobre África. Imagen de Columbia-Tristar.

Imagen digital del documental ‘Winged Migration’ (2001) mostrando un charrán ártico volando sobre África. Imagen de Columbia-Tristar.

Algunas de estas capacidades no humanas las estamos descubriendo poco a poco, a veces casi por casualidad, o al menos gracias a que en ocasiones nos damos cuenta de su existencia a través de observaciones anecdóticas. Un ejemplo es el magnetismo. Todo niño humano aprende rápidamente que un campo magnético es invisible; no hay nada que podamos ver y que sea responsable de que esa pequeña figurita del Big Ben se quede pegada a la puerta de la nevera sin caerse. Pero si alguna vez sus hijos le preguntan por qué, no tema: en este caso podrá responderles con tranquilidad que ni siquiera los científicos lo saben.

Bien, esto no es del todo cierto. El magnetismo es algo perfectamente descrito y conocido. Pero en todo aquello que llamamos “acción a distancia”, sin que medie ninguna interacción física, ya podemos parir ecuaciones para explicarlo y predecirlo, pero nunca llegaremos a interiorizar cómo se produce. Sucede también con la gravedad o con un fenómeno físico llamado entrelazamiento cuántico, por el cual dos partículas separadas pueden estar sincronizadas en sus propiedades de modo que una cambia en función de lo que le suceda a la otra, sin que sepamos cómo lo logran. Incluso Einstein lo puso en duda llamándolo “spooky action at a distance“, con un adjetivo que viene a significar algo raro y asombroso que asusta un poco. Pero el hecho es que ocurre.

En el caso del magnetismo, nuestra sensación como humanos podría ser esa que uno tiene cuando todos los demás hablan de una fiesta a la que no nos han invitado, porque el progreso de la investigación nos está revelando cada vez más casos de animales que son capaces de detectar el campo magnético de la Tierra, eso que para nosotros es completamente invisible y para lo cual tuvimos que inventar la brújula. Desde hace tiempo sabemos que el magnetismo terrestre guía las largas migraciones de las aves o las mariposas, pero a lo largo de los años se ha descrito la orientación magnética en animales tan dispares como abejas, termitas, ratones, bacterias, ratas topo, langostas, peces, tortugas marinas, lobos y murciélagos. Es decir, casi todos, ¿menos nosotros?

Es más: hace unos años se suscitó un interesante debate científico a raíz de un estudio según el cual las vacas y los ciervos preferían alinearse con el campo magnético terrestre norte-sur, algo que no sucedía donde había fuertes interferencias electromagnéticas locales, como líneas de alta tensión. El debate surgió cuando otros estudios no lograron reproducir estos resultados. Pero es que en 2013, un grupo de investigadores checos y alemanes describió que los perros tienden a orinar y defecar según las líneas magnéticas norte-sur. Según el estudio publicado en la revista Frontiers in Zoology, “los perros prefieren excretar con el cuerpo alineado a lo largo del eje norte-sur en condiciones de campo magnético calmado. Este comportamiento direccional se anula con campo magnético inestable”. Los científicos añadían que esto explicaba el porqué de tanta vuelta antes de ponerse a ello. Y desde aquí pido a los propietarios de perros una contribución a la ciencia ciudadana: que saquen a pasear a sus animales brújula en mano y que informen de sus observaciones.

Pero entremos en materia: ¿cómo lo hacen todos ellos? El año pasado expliqué aquí una hipótesis según la cual las aves literalmente podrían ver el campo magnético en forma de líneas azules en el aire, gracias a un efecto cuántico en moléculas de su retina sensibles a la luz de este color. En 2012, dos investigadores de EE. UU. descubrieron neuronas en el cerebro de las palomas que registran la dirección y la fuerza del campo magnético. Estas neuronas serían las responsables de recoger la información detectada por algún órgano sensor del magnetismo, y de entregarla a su vez a alguna estructura cerebral encargada de construir un mapa. En cuanto a lo primero, tenemos la hipótesis de la retina, pero también hay indicios de que el oído interno podría tener algo que decir. Y en cuanto a lo segundo, algunos científicos proponen que podría tratarse del hipocampo, la región cerebral donde se ha ubicado la memoria de localización.

Ilustración de la 'antena magnética' descubierta en el gusano 'C. elegans'. Imagen de Andrés Vidal-Gadea.

Ilustración de la ‘antena magnética’ descubierta en el gusano ‘C. elegans’. Imagen de Andrés Vidal-Gadea.

Ahora, lo nuevo: esta semana, un equipo de investigadores de la Universidad de Texas en Austin y la Universidad Estatal de Illinois (EE. UU.) ha publicado un estudio en la revista eLife que descubre la existencia de una especie de antena magnética en un minúsculo gusano nematodo del suelo llamado Caenorhabditis elegans, un animal muy utilizado como modelo de laboratorio. Los científicos observaron algo enormemente curioso: mientras que los gusanos nacidos en Texas excavan hacia abajo en vertical en busca de alimento, los procedentes de otros lugares del planeta, como Inglaterra, Hawái o Australia, lo hacen en un ángulo respecto al campo magnético que corresponde precisamente a lo que sería hacia abajo si estuvieran en sus países de origen. En concreto, los gusanos australianos emigran hacia arriba.

Sorprendidos por este peculiar fenómeno, los investigadores situaron a los gusanos en un campo magnético artificial orientable a voluntad, comprobando entonces que cambiaban la dirección de su movimiento en consonancia. Y descubrieron además que todo esto no sucede en gusanos que llevan alteradas unas neuronas especializadas llamadas AFD, que los C. elegans emplean para detectar la temperatura y los niveles de dióxido de carbono. Así, los científicos han podido comprobar que estas neuronas se activan en respuesta al campo magnético. Según el codirector del estudio, Jonathan Pierce-Shimomura, esto supone el descubrimiento de la primera neurona magnetosensible, y eso que hasta ahora ni siquiera se sabía que los C. elegans fueran capaces de orientarse por el campo magnético. “Hay posibilidades de que otros animales más monos [sic: cuter], como mariposas y aves, empleen las mismas moléculas”, ha dicho el investigador.

Así, ya conocemos algo más de cómo algunos animales ven, o sienten, el campo magnético. Y una vez más, ¿los humanos no hemos sido invitados a esta fiesta? No lo den por hecho: en 2011, un intrigante estudio publicado en Nature reveló que una proteína de la retina humana es capaz de guiar la orientación magnética de las moscas cuando se les elimina la suya y se reemplaza por la nuestra. Y esta molécula, llamada criptocromo, es precisamente la versión humana de la que he mencionado más arriba para los pájaros. Es evidente que nosotros no vemos líneas azules en el aire (yo, al menos); pero algunos experimentos controvertidos sugieren que incluso los humanos tenemos una cierta sensibilidad al campo magnético terrestre. En 2014 la investigadora Sabine Begall, de la Universidad de Duisburgo-Essen (Alemania), coautora de los estudios que descubrieron la supuesta capacidad de orientación magnética en vacas y perros, decía lo siguiente en un podcast para NPR News:

Después de publicar nuestro primer estudio sobre el ganado –en 2008– recibimos un montón de llamadas de gente de todo el mundo. Y decían, oye, yo también puedo detectar el campo magnético. Y al principio yo pensaba, bah, no puedo creérmelo. Pero sabes, entre ellos había hasta un ganador del premio Nobel. Y entonces dije, ¿eh?, tal vez hay algo en la historia de que las personas pueden detectar el campo magnético.

Por si fuera poco, desde el año 2000 sabemos también que los taxistas londinenses con un mejor conocimiento del mapa de su ciudad tienen agrandado el hipocampo (otro estudio lo confirmó en 2011), esa región del cerebro en la que almacenamos los mapas mentales y en la que, algunos creen, podría integrarse la orientación magnética de las aves. Y al fin y al cabo, todos los invitados a la fiesta, desde el gusano C. elegans hasta los perros, comparten algún ancestro común que es también nuestro. ¿Acaso los humanos hemos olvidado esta capacidad?

Más razones para sospechar que el alzhéimer es un peaje evolutivo

No se puede ser bueno en todo; quien mucho abarca, poco aprieta, y no se puede estar en misa y repicando. Son expresiones populares y refranes que condensan lo que en su aplicación a la biología se conoce como trade-offs evolutivos (peajes, en mi traducción libre), y que expliqué ayer. Para ahorrarles el clic, resumo que desde tiempos de Darwin se sabe que las adaptaciones ventajosas al entorno a menudo tienen un precio, en forma de otras desventajas asociadas que pueden ser más o menos perjudiciales según el caso, pero de modo que el balance final compensa. El repertorio de adaptaciones de los seres vivos al medio en el que viven es como una sábana demasiado pequeña; si se tira de ella para cubrir una parte del cuerpo, otra tirita de frío.

En el caso de los humanos, es natural que existan estos trade-offs. Los peajes aparecen con frecuencia en casos de hiperespecialización. Y para hiperespecializados, nosotros: los Homo sapiens somos un ejemplo extremo del problema de tener todos los huevos en la misma cesta. De las millones de especies que habitan este planeta, actualmente solo una, nosotros, ha discurrido por el camino evolutivo de desarrollar la capacidad intelectual que nos permite hacer cosas como escribir este artículo o leerlo. De hecho, quienes más cerca estuvieron también de ello, como los neandertales, sufrieron el destino de la extinción.

Ilustraciones como esta, aunque muy populares, transmiten una visión errónea de la evolución humana. Imagen de Wikipedia.

Ilustraciones como esta, aunque muy populares, transmiten una visión errónea de la evolución humana. Imagen de Wikipedia.

Este camino no es una vía hacia ninguna clase de perfección, sino simplemente una opción evolutiva más, que en el caso del ser humano le ha resultado ventajosa; pero la típica estampa de los homininos primitivos caminando en fila detrás de un humano moderno ha transmitido la falsa impresión popular de que la evolución es lineal y que nuestros ancestros eran personas a medio hacer cuyo propósito era servir de modelos intermedios, como en una serie de fotos de un edificio en construcción. La biología no funciona así: en cada momento de la historia, cada una de las especies antecesoras del Homo sapiens estaba bien adaptada a sus circunstancias, como demuestra su éxito evolutivo. Chimpancés, gorilas y orangutanes no están a medio evolucionar, como falsamente sugieren las mil y una películas de El planeta de los simios; de hecho, son inmejorablemente aptos para sobrevivir en su entorno, y hay estudios que sugieren que los chimpancés están realmente más evolucionados que nosotros, ya que su selección natural ha sido más intensa.

Entre los trade-offs estudiados en los humanos hay algunos relacionados con la reproducción. Por ejemplo, los altos niveles de testosterona en los hombres son beneficiosos durante la juventud, pero exponen a mayor riesgo de cáncer de próstata en la vejez. También se cree que la existencia de una reserva de ovocitos en el ovario femenino para toda la vida fértil tiene la ventaja de generar ciclos regulares, lo que facilita la regulación de la reproducción; el inconveniente aparece cuando se agota esta reserva, con la menopausia y sus síntomas.

Pero como es natural, gran parte de los trade-offs propuestos para los humanos afectan a nuestro rasgo más sobresaliente, el cerebro. En 2011, un estudio reveló que la típica reducción del volumen cerebral que aparece en los humanos con la llegada de la vejez no existe ni siquiera en nuestros parientes más próximos, los chimpancés, y que parece estar relacionada con nuestra mayor longevidad. Los investigadores planteaban la posibilidad de que se trate de un trade-off evolutivo cuya contrapartida es la propensión a desarrollar enfermedades neurodegenerativas propias de la edad, como el alzhéimer.

Tomografía de positrones de un cerebro humano con enfermedad de Alzhéimer. Imagen de NIH.

Tomografía de positrones de un cerebro humano con enfermedad de Alzhéimer. Imagen de NIH.

También en 2011, una revisión sobre el enfoque evolutivo del alzhéimer repasaba varias propuestas relativas a cómo los sofisticados procesos destinados a construir y estabilizar nuestra estructura cerebral, manteniendo una plasticidad necesaria durante la larga maduración humana, pueden tener un coste bioenergético en forma de lesiones a edades avanzadas. Algunos investigadores sugieren que el riesgo de padecer alzhéimer a los 85 años es del 50%, y que si llegáramos a cumplir los 130 todos los humanos lo padeceríamos.

Los autores de la revisión, Daniel Glass (Universidad Estatal de Nueva York) y Steven Arnold (Universidad de Pensilvania), destacaban un dato curioso: de los tres alelos (versiones de un gen) de la apolipoproteína E (APOE) que se relacionan diferencialmente con el riesgo de padecer alzhéimer, el que se asocia con un mayor riesgo, APOE ε4, es la forma ancestral que aparece en nuestros parientes y ancestros evolutivos. La forma neutral y la ventajosa (ε3 y ε2 respectivamente) han aparecido exclusivamente en los humanos. ¿Por qué el alelo ε4 sencillamente no ha desaparecido? Una respuesta evidente sería que no afecta a esa “reproducción del más apto” en la que ayer dejábamos la expresión de Darwin. Pero parece que hay algo más; el gen APOE está implicado en muchos procesos, y algunos estudios sugieren que el alelo ε4 confiere otras ventajas, como protección frente al riesgo cardiovascular en respuesta a estrés mental (el típico infarto por susto), frente al daño hepático inducido por virus, y frente al riesgo de abortos espontáneos. De nuevo, un caso de la pleiotropía antagónica que definíamos ayer; es decir, más trade-offs.

Así, el estudio que comenté anteriormente no es el primero que propone la posibilidad de que el alzhéimer sea un trade-off evolutivo que impondría una restricción esencial a la prolongación de nuestra longevidad. En este nuevo trabajo, los investigadores revelan que dos de los genes que muestran señales de selección positiva en humanos son SPON1, que participa en la construcción del andamiaje de los axones y se une a la proteína precursora amiloide impidiendo su ruptura, y MAPT, responsable de la proteína tau que estabiliza la estructura en la que se apoyan las neuronas. Curiosamente, ambas son responsables de nuestra avanzada estructura cerebral, y sus hipotéticos fallos de funcionamiento producirían precisamente dos de los síntomas típicos del alzhéimer, la acumulación de beta amiloide y las madejas de proteína tau. A la vista de estos resultados, la sospecha de que el alzhéimer es el resultado de un trade-off evolutivo parece casi inmediata.

La conclusión es que tal vez esto no nos deja demasiada esperanza a la hora de luchar contra algo que los clínicos ven solo como una enfermedad (y desde el punto de vista patológico no cabe duda de que lo es), pero que para muchos biólogos es además algo más profundo y complejo, el doloroso peaje evolutivo de una larga vida. Como decíamos arriba, los humanos actuales no somos una forma perfecta de nada, sino otra especie más en su incesante camino evolutivo. Y en este breve instante de la historia de la vida en la Tierra que es la civilización, los humanos padecemos alzhéimer.

Si acaso, nuestros descendientes lejanos podrían tener algo más de suerte: dado que actualmente el alelo de APOE más prevalente en la población es el neutral ε3 –el 95% de los humanos tiene al menos una copia–, y que tal vez esto sea simplemente un efecto de la deriva genética (fenómeno que, a diferencia de la selección natural, conserva y extiende en las poblaciones versiones de los genes que no son beneficiosas ni perjudiciales, sino simplemente neutras), según Glass y Arnold sería de esperar que en el futuro el alelo dañino ε4 desapareciera de las poblaciones humanas. Así, al menos el alzhéimer no sería una funesta inevitabilidad para los futuros humanos que sobrepasarán con creces el siglo de vida.