Archivo de la categoría ‘Fisiología animal’

Este es el límite de calor que puede aguantar el cuerpo humano

Es curioso cómo tenemos percepciones de distintos factores de riesgo para la salud que no se corresponden con su peligrosidad real. Fumar está prohibido en todas partes, y hay un gran revuelo social con el amianto cada vez que se revela su presencia en cualquier lugar. Pero, en cambio, tomar el sol continúa siendo deporte nacional, pese a que la radiación solar pertenece al mismo grupo de máximo riesgo de cáncer que el tabaco y el amianto. También pertenece a este grupo el alcohol, que bebemos generosamente, mientras al mismo tiempo se monta un gran aparato mediático y publicitario contra compuestos presentes en productos de consumo a los que ni siquiera se les ha demostrado claramente alguna toxicidad.

No seré yo quien vaya a abogar por prohibir el alcohol o tapar el sol a lo Montgomery Burns. Me limito a subrayar estas absurdas inconsistencias, instaladas y favorecidas por la publicidad, los medios y el entorno social. Otra más: parece que ahora acaba de descubrirse que el calor mata, cuando ya mataba a cientos de personas al año. Ha sido necesario que mueran trabajadores en el cumplimiento de sus funciones para que alguien empiece a darse cuenta de que realmente el calor es una amenaza para la vida, más allá del tratamiento ligero y festivo que tradicionalmente se le ha dado en los medios.

Unos jóvenes se refrescan en el río Iregua a su paso por Logroño. Imagen de EFE / Raquel Manzanares / 20Minutos.es.

Sí, hay un límite de calor incompatible con la vida humana. Un estudio publicado en 2010 en PNAS, que a menudo sirve como referencia sobre esos límites, decía: «a menudo se asume que los humanos podrían adaptarse a cualquier calentamiento posible. Aquí argumentamos que el estrés térmico impone un robusto límite superior a tal adaptación».

Los humanos somos eso que en la antigua EGB solía llamarse «animales de sangre caliente» (espero que hoy ya no, porque es nomenclatura anticuada y errónea); homeotermos, es decir, que somos capaces de mantener una temperatura corporal constante —37 °C, grado más, grado menos— con independencia de la ambiental, gracias a nuestro metabolismo y a una serie de maravillosos mecanismos evolutivos.

Contra el frío excesivo contamos además con otro sencillo mecanismo no metabólico ni evolutivo: el jersey. Pero contra el calor, si no podemos apartarnos de él, solo dependemos de nosotros mismos. Cuando el cuerpo se sobrecalienta, los sensores de temperatura de la piel y del interior del organismo envían una señal de alarma al hipotálamo, la central cerebral de regulación de la temperatura. El hipotálamo transmite entonces una orden de vuelta a la piel: sudar. El sudor es uno de esos maravillosos mecanismos, ya que la evaporación en la piel sirve para enfriarnos.

Al mismo tiempo, el hipotálamo ordena a los capilares sanguíneos de la piel que se dilaten para acoger más sangre, de modo que esta pueda enfriarse en la superficie del cuerpo. Entonces la presión sanguínea disminuye, y el corazón se ve obligado a bombear más fuertemente para mantener la circulación. Los músculos se ralentizan, lo que provoca una sensación de fatiga y somnolencia.

Si el calor es extremo y nada de esto consigue rebajar la temperatura corporal a valores normales, el sistema comienza a colapsar. El corazón se ralentiza, se detiene el enfriamiento de la sangre en la piel y se corta la sudoración. Entonces el cuerpo comienza a calentarse sin freno y empiezan a fallar el cerebro y el resto de órganos. En torno a 41 °C de temperatura interna se desata la catástrofe molecular: las proteínas empiezan a desnaturalizarse, a perder su forma. La vida depende de millones de interacciones entre las proteínas cada millonésima de segundo; si esto se para, todo el organismo falla. El ejemplo más típico de desnaturalización de las proteínas por el calor es la coagulación de la clara del huevo al hervirlo o freírlo.

Una vez que se ha llegado a estos extremos, ya no hay vuelta atrás. Ni hielo, ni sueros, ni nada. Se trata solo de qué órgano vital fallará primero. El inocente nombre de «golpe de calor» oculta algo que en realidad es un fracaso general del organismo sometido a estrés térmico extremo. Por eso parece inconcebible que esto no se haya tenido en cuenta como riesgo laboral, a juzgar por lo ocurrido en Madrid.

Pero ¿cuánto calor mata? Para evaluarlo, los científicos utilizan un parámetro estandarizado, que es la llamada temperatura de bulbo húmedo (wet-bulb temperature), o Tw. Esta es la temperatura que marca un termómetro envuelto en un paño empapado en agua, que es menor que la medida en el ambiente, debido al enfriamiento causado por la evaporación del agua del paño. La temperatura de bulbo húmedo Tw sería igual a la ambiental si la humedad relativa del aire fuera del 100% (recordemos que un 100% de humedad relativa no significa estar nadando en el agua, sino que es la máxima cantidad de vapor de agua que el aire puede contener).

El motivo de utilizar este valor de Tw es poder definir valores de temperatura máxima soportable por el ser humano sin que el mecanismo de sudoración pueda hacer nada para contrarrestarlo; con un 100% de humedad relativa el sudor no puede enfriar el cuerpo. A humedades relativas decrecientes, la diferencia entre Tw y la temperatura ambiental se va agrandando, de modo que es posible calcular a qué Tw equivale una temperatura ambiental concreta con un grado de humedad determinado.

El estudio citado de 2010 calculaba que en la Tierra la máxima Tw no suele superar los 31 °C, y que el límite posible para la vida estaría en una Tw de 35 °C. Para hacernos una idea, convirtiendo con otros niveles de humedad: con una humedad del 50%, como podría ser la de Madrid, esta Tw letal de 35 °C equivaldría a una temperatura ambiental de 44,8 °C; pero con una humedad del 90%, como podría ser un verano en Alicante, la temperatura ambiental equivalente a esa Tw de 35 °C sería de solo 36,5 °C.

Por cierto, consultando la web de la Agencia Estatal de Meteorología, la previsión hoy en Alicante es de una temperatura máxima de 34 °C y una humedad relativa máxima del 100%. Y aunque estos dos valores máximos no necesariamente tienen que coincidir en el mismo momento del día, si esto ocurriese los alicantinos estarían solo un grado por debajo del límite considerado compatible con la vida humana según el estudio de 2010. Con esto quizá se entienda mejor una de las razones por las que el acuerdo de París de 2015 contra el cambio climático advertía de lo catastrófico que resultará un aumento de 2 °C.

Pero ocurre que ese valor calculado en el estudio de 2010 era más bien teórico. Ahora, un equipo de investigadores de la Penn State University dirigido por el climatólogo Daniel Vecellio y el fisiólogo Larry Kenney ha puesto a prueba los límites reales en experimentos con voluntarios. Y la mala noticia es que ese límite real está por debajo de lo que decía el estudio de 2010.

Los investigadores reclutaron a un grupo de mujeres y hombres jóvenes y sanos, a quienes se les dio a tragar un pequeño termómetro telemétrico en forma de cápsula para poder monitorizar la temperatura interna de su cuerpo. Luego los voluntarios se encerraban en una cámara donde se les sometía a distintas condiciones de temperatura y humedad mientras hacían tareas ligeras como cocinar o comer.

Lo que descubrieron los científicos es que el límite del peligro, a partir del cual la temperatura interna de los voluntarios comenzaba a subir sin que la sudoración pudiese compensarlo, estaba en torno a una Tw de 31 °C. Esto equivaldría a 40,2 °C con una humedad del 50% (Madrid), o a solo 32,5 °C con una humedad del 90% (Alicante).

Es decir, con olas de calor como las que estamos sufriendo, ya estamos más allá del límite. Una exposición prolongada a estas condiciones puede matar, como se está demostrando en la práctica. El experimento de este estudio se hizo con personas jóvenes y sanas; las personas mayores son aún más sensibles al estrés térmico.

Este gráfico de los investigadores muestra el límite crítico de temperaturas y humedades, que sería la frontera entre la zona amarilla y la roja:

Límite crítico (entre la zona amarilla y la roja) de temperaturas y humedades para el cuerpo humano. Imagen de W. Larry Kenney, CC BY-ND.

Tocaría acabar este artículo con una mención sobre lo que se nos viene encima con el cambio climático, y con la previsión que comenté ayer de que estas olas de calor van a ser más frecuentes, duras y persistentes en los próximos años, porque nos ha tocado vivir en la región del hemisferio norte templado más propensa a estos azotes. Pero creo que ya está todo dicho.

Así es el sistema de guiado de los mosquitos hacia nosotros (y por qué a unos pican más que a otros)

Que levante la mano quien pueda acabar el verano sin una sola picadura de mosquito en su piel. Pero sí, es cierto que no a todos nos pican por igual. En todo grupo humano siempre parece haber quienes son para los mosquitos como la máquina de vending de la oficina.

Antiguamente, y quizá todavía, se decía eso de que hay personas con la sangre más dulce, lo cual es otro más de los mitos del verano, como el corte de digestión. Todo el que se pare un momento a pensarlo se dará cuenta inmediatamente del absurdo: incluso suponiendo que la sangre fuera dulce, que no, y que los mosquitos fueran golosos, que tampoco –en realidad buscan en nuestra sangre las proteínas y el hierro que necesitan para el crecimiento de sus huevos, ya que solo las hembras pican–, ¿cómo iba a saber el mosquito el grado de dulzor de la sangre de una persona sin picarla antes?

Nuestras diferencias personales en el atractivo que ejercemos para los mosquitos se basan, lógicamente, en pistas que pueden percibir antes de picar: señales olfativas, sustancias químicas que produce nuestro cuerpo y que los guían hasta nosotros. Pero no es solo nuestro olor lo que los atrae, ni tampoco se trata de que unas personas suden más que otras. En realidad, los insectos más molestos del verano –y, dicho sea de paso, también los animales que más muertes causan en el mundo– utilizan un complejo y sofisticado sistema de guiado perfeccionado a lo largo de millones de años de evolución.

Un mosquito picando. Imagen de CDC.

Un mosquito picando. Imagen de CDC.

Así es como funciona. Al respirar, emitimos dióxido de carbono, CO2. Esta es la señal primaria que alerta a los mosquitos de que una posible presa se encuentra cerca. Tan eficientes son detectando este gas que pueden percibirlo a 50 metros de distancia. Imaginemos lo que esto supone: aunque normalmente pensemos que solo los mosquitos que vemos posados en el techo son los que nos tienen en su punto de mira, en realidad el gas de nuestra respiración está atrayendo a todos los chupasangres presentes en 50 metros a la redonda. Y no hay nada que podamos hacer para evitarlo… si es que queremos seguir respirando.

A continuación, el mosquito comienza a volar hacia la fuente que está emitiendo ese CO2. Lo cual a veces no es tan sencillo como podría parecer: dado que el gas es transportado por las corrientes de aire, el mosquito tiene que volar en contra del viento, lo que hace moviéndose en zigzag, de forma algo parecida a como hacen los veleros para navegar a contraviento.

Pero mientras tanto, ha ocurrido algo asombroso: el olor del dióxido de carbono ha disparado una señal en el cerebro del mosquito (más complejo de lo que creen quienes lo utilizan como insulto) que activa las neuronas encargadas de controlar la visión. Así, en el momento en que el mosquito huele el CO2, pasa a modo visual: ahora será su visión la que comience a buscar formas que puedan relacionarse con la figura de una presa.

A unos 10 metros de distancia, el mosquito ya puede vernos, pero aún no nos ha identificado como un objetivo. En realidad, su visión es rudimentaria; no pensemos que tiene la capacidad de distinguir a un humano de una barra horizontal en movimiento (un modelo utilizado por algunos investigadores). Por el momento, aún somos solo uno más de los objetos que entran en su campo de visión; todavía no ha localizado la pista de aterrizaje.

Entonces comienza un proceso de eliminación que se basa en señales térmicas, como los sistemas de guiado de los misiles. El mosquito sobrevuela los objetos de su entorno en busca de calor. Nosotros lo desprendemos; nuestro sofá, no. A unos 20 centímetros de distancia, ya puede detectar esta señal térmica y distinguirnos del sofá. Ya está más cerca de su merienda.

En ese momento, el mosquito se olvida por completo del CO2. Al fin y al cabo, no le interesa dirigirse a nuestra boca o nuestra nariz, que son nuestras chimeneas, sino a un lugar accesible de nuestra piel. Y para ello, vuelve a pasar por última vez a modo olfativo: a unos tres centímetros de distancia de nuestra piel es cuando se produce ese “target locked” de los aviones en las películas. Cuando el mosquito integra en su panel de control la señal térmica con la humedad que produce nuestro cuerpo y con el olor de otros compuestos que desprendemos, como ácido láctico, amoniaco, ciertos ácidos orgánicos, acetona y sulcatona… ya no tenemos escapatoria: somos su cena.

Tan asombroso es el sistema de guiado de los mosquitos que incluso puede funcionar prescindiendo de algunas de estas señales. Por ejemplo, incluso aunque pudiéramos dejar de respirar y detener nuestra emisión de CO2, el insecto hace batidas por las formas que detectan sus ojos en busca de señales térmicas, y estas pueden ser suficientes para localizar a su presa.

Todo lo anterior lo hemos ido conociendo en los últimos años gracias a las investigaciones de científicos como Jeffrey Riffell, de la Universidad de Washington, y Michael Dickinson, del Instituto Tecnológico de California. Los experimentos de estos investigadores son para dejar a cualquiera con la boca abierta.

Por ejemplo, la activación del sistema visual del mosquito por las señales olfativas es el resultado de un estudio publicado este mes en la revista Current Biology, y para el cual los científicos han utilizado el siguiente sistema (mostrado en la imagen): un pequeño recinto, tamaño insecto, rodeado por una pantalla circular de LED en la que se proyectan estímulos visuales a un mosquito que permanece en el centro atado con un alambre de tungsteno, mientras un sensor óptico debajo de él registra los movimientos de sus alas, y un tubo le suministra las señales olfativas necesarias. Para observar cómo se activan las regiones cerebrales encargadas del olfato y la visión, los investigadores utilizan mosquitos transgénicos cuyas neuronas se iluminan en color verde fluorescente cuando están en funcionamiento.

Sistema empleado por los investigadores para estudiar el comportamiento de los mosquitos. Imagen de Kiley Riffell/U. Washington.

Sistema empleado por los investigadores para estudiar el comportamiento de los mosquitos. Imagen de Kiley Riffell/U. Washington.

Pero volvamos a lo quizá se estén preguntando: ¿Por qué a mí? ¿Por qué yo soy esa máquina de vending en la oficina de los mosquitos?

Los investigadores coinciden en señalar que es la fuerza de esas combinaciones de señales la que atrae más a los mosquitos hacia unas personas que hacia otras, sin que probablemente exista un único factor determinante. Un dato curioso es que los mosquitos parecen picar más por igual a los gemelos idénticos que a los mellizos, lo que sugiere la intervención de factores genéticos que probablemente influyan en el olor corporal. Otra pista interesante es que el mayor o menor atractivo de una persona para los mosquitos depende de la microbiota de su piel, es decir, de los microbios que viven sobre nosotros, que a su vez también son responsables del olor corporal. Así que, en definitiva, todo lleva a lo mismo: se reduce a nuestro olor corporal. Para los mosquitos, algunos olemos más apetitosos que otros.

Para terminar, no está de más recordar algo que ya debería ser suficientemente conocido, pero tal vez no: lo único que evita las picaduras de los mosquitos son las barreras físicas y los repelentes químicos (sobre todo el DEET). Los repelentes electrónicos por ultrasonidos no sirven absolutamente para nada, e incluso pueden ser perjudiciales para quienes los utilizan.

Los pulpos, más protegidos en el laboratorio que en la cocina

Cuando en 2010 se aprobó la nueva directiva europea sobre experimentación con animales, que entró en vigor en 2013, hubo uno de sus aspectos que sorprendió a muchos. La normativa a aplicar en los países de la Unión establecía unas condiciones mucho más restrictivas que las existentes hasta entonces –es tal vez la más estricta del mundo después de la británica– para toda investigación que pretenda utilizar animales vertebrados; es decir, en una escala evolutiva, digamos que desde las lampreas hasta los primates no humanos. Pero la directiva incluía también un extra, un grupo de animales invertebrados: los cefalópodos; pulpos, sepias, calamares y nautilos.

Un pulpo Dumbo (Grimpoteuthis). Imagen de NOAA / Wikipedia.

Un pulpo Dumbo (Grimpoteuthis). Imagen de NOAA / Wikipedia.

¿Por qué los cefalópodos? ¿Y por qué no otros invertebrados? En primer lugar debo explicar que la presencia de este grupo de moluscos en los laboratorios no es rara, especialmente en los de neurociencias. De hecho, una gran parte de lo que hoy se sabe sobre el funcionamiento de las neuronas se lo debemos al humilde calamar.

En 1909 el anatomista y embriólogo estadounidense Leonard Worcester Williams descubrió que los axones de ciertas neuronas del calamar –los cables que transmiten el impulso eléctrico de unas neuronas a otras– tenían un grosor de hasta un milímetro, un tamaño gigantesco en comparación con los de otras especies.

Unos 30 años más tarde el inglés John Zachary Young comprobó que estas neuronas gigantes le sirven al calamar para propulsarse rápidamente por el agua mediante contracciones de los músculos del manto. En la misma década, los también ingleses Alan Hodgkin y Andrew Huxley descubrieron que en el axón del calamar era tan grueso que podían introducir un fino hilo de plata para medir cómo se transmitía la corriente eléctrica del impulso nervioso. A partir de entonces otros muchos investigadores comenzaron a estudiar el sistema nervioso utilizando el axón gigante del calamar. Los estudios con estos animales sentaron las bases de gran parte de lo que hoy se conoce sobre cómo funciona el sistema nervioso, y por tanto sobre lo que hoy puede hacerse para curar sus enfermedades.

Pero los estudios posteriores con cefalópodos comenzaron a revelar a los investigadores que estos animales son los invertebrados más sofisticados que existen (intento evitar el término «más evolucionados» porque suele ser erróneo casi todas las veces que se emplea). Su cerebro es comparativamente más grande que el de los vertebrados conocidos como «de sangre fría» (otro término erróneo), y su inteligencia es sorprendente: son capaces de aprender, encontrar soluciones a problemas y utilizar herramientas que guardan para más tarde.

En algunos casos se han escapado de sus acuarios para comerse los cangrejos de otro tanque y regresar después a su casa. Un famoso pulpo de un acuario de Alemania llamado Otto lanzaba piedras al cristal y disparaba chorros de agua a una lámpara para provocar cortocircuitos. En internet incluso circulan listas de octópodos famosos por sus habilidades (sí, uno de ellos fue aquel Pulpo Paul del Mundial de Fútbol). Y todo esto sin mencionar su increíble capacidad de camuflaje, aún más pasmosa teniendo en cuenta que la mayoría de los cefalópodos tienen una visión aguda, pero son ciegos a los colores.

Un pulpo abriendo un bote con tapa de rosca en Salzburgo (Austria). Imagen de MatthiasKabel / Wikipedia.

Un pulpo abriendo un bote con tapa de rosca en Salzburgo (Austria). Imagen de MatthiasKabel / Wikipedia.

Debido a su complejo sistema nervioso, muchos expertos consideraron que los cefalópodos debían recibir la misma protección que cualquier vertebrado de cara a la experimentación con animales, y por ello las leyes europeas y británicas los incluyeron en sus regulaciones como caso especial de invertebrados. Lo cual llevó a las organizaciones animalistas a protestar por la no inclusión de otros grupos de invertebrados como los crustáceos decápodos (genéricamente, los cangrejos). Pero la diferencia con los cefalópodos en cuanto a su sistema nervioso es muy amplia, y los legisladores debían poner el punto de corte en algún lugar; de haber incluido los cangrejos, no habría motivos fundamentados para no extenderlo también a los insectos.

Sin embargo, la inclusión de los cefalópodos en la norma europea levantó bastante revuelo. Esta ley comunitaria (que cada país ha traspasado a su propia legislación) establece la necesidad de que todo experimento con animales de las especies protegidas pase un proceso de aprobación de varios pasos en el que tiene que justificarse la imposibilidad de realizar la misma investigación sin utilizar animales, y en todo caso obliga a que el daño y el estrés se minimicen por todos los medios posibles, por supuesto empleando siempre anestesia.

El problema, decían los investigadores que trabajan con cefalópodos, es que nadie sabe si la anestesia funciona en estos animales ni cómo, y podría hacerles más daño que bien. Para estos investigadores, la ley europea era «mamiferocéntrica». Los resultados de la nueva norma los resumía en 2016 la bióloga marina Belinda Tonkins, especialista en bienestar animal de la Universidad de Middlesex (Reino Unido): «entre 2005 y 2011, es decir, antes de la legislación, hubo en Europa al menos 370 estudios científicos revisados por pares sobre cefalópodos que hoy requerirían una licencia […] Entre 2013 y 2015, no se efectuó ningún procedimiento experimental con cefalópodos».

Está claro que a la investigación basada en el uso de cefalópodos la normativa actual le ha complicado mucho la tarea, pero la inclusión de estos animales en la legislación parece suficientemente justificada, y la legislación sobre protección animal en los laboratorios es una exigencia moral promovida por los propios científicos. Hoy la mayoría de los países desarrollados, los más pujantes en ciencia, cuentan con leyes orientadas hacia lo que desde 1959 se conoce como las 3R: reemplazamiento (tratar en la medida de lo posible de sustituir los animales por otros sistemas in vitro o in silico), reducción (reducir el número de animales utilizados) y refinamiento (mejorar las técnicas para minimizar el daño y el estrés).

Estas normas imponen una vigilancia estrecha de la experimentación con animales para garantizar una armonización entre el progreso biomédico y nuestras obligaciones éticas hacia los seres con los que compartimos este planeta. Todo ello teniendo en cuenta que para ciertas investigaciones es y será imposible sustituir un sistema tan complejo como un organismo por un cultivo de células, un órgano in vitro o una simulación informática.

Pero frente a todo esto, llama la atención que en otro ámbito tan indiferente al progreso de la humanidad como es la gastronomía sigan empleándose métodos que suponen una evidente tortura para los cefalópodos: apalearlos, congelarlos o «asustarlos» introduciéndolos en agua hirviendo. Todo ello mientras el animal aún está vivo, salvo que alguien conozca la manera de practicar una eutanasia rápida e indolora a un pulpo. Basta una ligera búsqueda en Google para encontrar infinidad de recetas y vídeos que informan sobre cómo preparar el pulpo utilizando alguno de estos procedimientos que serían inadmisibles si se aplicaran a cualquier vertebrado.

Y sin embargo, las críticas de ciertos grupos animalistas radicales se focalizan en los laboratorios, no en los restaurantes. Pero la ciencia, que es simplemente algo tan modesto como una herramienta esencial para el conocimiento y el progreso, no puede competir en popularidad con artes tan espiritualmente elevadas y trascendentales como la cocina; donde esté un buen pulpo a la gallega, que se quite la investigación del alzhéimer.

Para acercarles un poco más al mundo de estos bellos e inteligentes animales, les dejo un par de vídeos que han circulado últimamente por internet. El primero se tomó minutos después del nacimiento de un ejemplar de Grimpoteuthis, llamado pulpo Dumbo (es evidente por qué), a bordo de un buque oceanográfico de la NOAA (Administración Atmosférica y Oceánica de EEUU), algo observado por primera vez por los científicos. El segundo muestra en directo cómo emerge de su huevo un bebé de pulpo del Caribe (Octopus briareus) en el Acuario de Virginia, y cómo desde su primer segundo de vida empieza a entrenar su habilidad para el camuflaje.

Diez ideas para entender la clonación (1-5)

Desde China ya no solo nos vienen productos baratos, comida con palillos o turistas. La ciencia china está respirándole en la nuca a la primera potencia mundial, EEUU, y cada vez son más las primicias científicas que nos llegan del este de forma inesperada (dado que aquel país no se distingue por su transparencia informativa, a lo que se une la barrera del idioma).

Lo que ha venido de Oriente esta semana ha sido la primera clonación exitosa de primates por el mismo procedimiento que en 1996 sirvió para crear la oveja Dolly. El resultado del experimento, publicado en la revista Cell, son dos pequeños macacos sanos llamados Zhong Zhong y Hua Hua, nombres tomados, según han explicado los autores, de «Zhonghua«, un término que significa «pueblo chino» o «nación china».

Zhong Zhong y Hua Hua, los primeros macacos clonados por el "método Dolly". Imágenes de Qiang Sun and Mu-ming Poo / Chinese Academy of Sciences.

Zhong Zhong y Hua Hua, los primeros macacos clonados por el «método Dolly». Imágenes de Qiang Sun and Mu-ming Poo / Chinese Academy of Sciences.

La clonación es un campo científico tan potencialmente productivo como popularmente malentendido. Decían los jedis aquello de que el miedo lleva a la ira, la ira lleva al odio, el odio lleva al sufrimiento y el sufrimiento lleva al lado oscuro. Con ciertos avances científicos ocurre que empiezan la cadena un poco antes, en la desinformación. La desinformación lleva al desconocimiento, el desconocimiento lleva a la incomprensión y la incomprensión lleva al miedo. Y etcétera.

Es dudoso que alguien reniegue de la posibilidad de conseguir avances médicos antes inalcanzables; pero continuando con las citas de fuentes eruditas, con el progreso de la medicina a veces ocurre lo que Homer Simpson le decía a su hija Lisa: te gustan las salchichas, pero no quieres saber cómo se hacen. Nadie quiere ver cómo muere su padre/madre/hermana/hermano/hijo/hija/pariente/amigo/amiga, y deseará que se le aplique todo tratamiento disponible que pueda evitarlo. Pero paradójicamente, hay quienes se oponen a los métodos utilizados para lograr estos avances, como la experimentación con animales, que en muchos campos de la biomedicina va a continuar siendo insustituible durante décadas, tal vez siglos.

Para romper la cadena lógica de los jedis hay que comenzar por el principio, en la información. Aquí van las cinco primeras de diez ideas para entender mejor qué es y qué no es la clonación, por qué se hace y para qué sirve.

1. La clonación es obtener un organismo genéticamente idéntico a otro.

Sí, todos sabemos esto, aunque esta definición básica se matizará un poco más abajo al hablar de dos tipos de clonación. Pero es importante comenzar aclarando que la clonación, en esencia, busca copiar algo que la naturaleza ya ha creado. Crear cosas nuevas con fines de mejora es una constante en ciencia, pero en el caso de la clonación el objetivo primordial no es fabricar un diseño nuevo, sino aplicar tecnología para imitar a la naturaleza, como se hace con la inseminación artificial o la fecundación in vitro. Hablar de «Frankenciencia», como ha hecho alguna organización animalista esta semana a propósito de la clonación de los macacos, revela un propósito deliberado y demagógico de fomentar la desinformación. Deliberado, porque cuesta creer que sea una cuestión de ignorancia.

2. La clonación no es manipulación genética.

Parece haber una cierta confusión en algunas personas que identifican la clonación con los procedimientos de modicación del ADN. La llamada ingeniería genética es la línea que a lo largo de este siglo puede llegar a salvarnos de males hoy incurables, como muchas enfermedades heredables o degenerativas, entre otras. Pero en concreto la clonación no es ingeniería genética; no manipula ADN. No actúa al nivel de las moléculas, sino de las células y sus partes. De hecho, como contaré ahora, cuando se inventó la clonación aún ni siquiera se sabía que la herencia genética reside en el ADN, ni se conocía cómo era esta molécula.

3. La naturaleza clona organismos continuamente, incluso humanos.

Muchos organismos se reproducen asexualmente por métodos de clonación, copiando exactamente la información genética de la madre para crear una hija igual a ella. Una forma de reproducción de este tipo es la partenogénesis, donde un óvulo sin fecundar produce un embrión. Ocurre en algunos invertebrados como los insectos, pero también en peces, anfibios y reptiles. En los humanos y otras muchas especies puede suceder que un óvulo fecundado se divida en dos embriones que son genéticamente diferentes de sus padres, pero iguales entre sí; son los gemelos idénticos.

4. Las técnicas de clonación no son un invento reciente, sino que nacieron en el siglo XIX.

Según lo dicho antes, y dado que la clonación no requiere el manejo de moléculas, estos procesos existen desde que la biología era mucho más rudimentaria que hoy. A finales del siglo XIX, el alemán Hans Adolf Eduard Driesch descubrió que si agitaba un embrión de erizo de mar cuando aún solo tenía dos células, podía separarlas y cada una de ellas daba lugar a un erizo completo. En 1902, el también alemán Hans Spemann trató de hacer lo mismo con un embrión de vertebrado, un tritón (en muchas referencias aparece como salamandra, pero si no me falla la taxonomía, era más bien un tritón). Dado que en este caso no bastaba con agitar para disgregar las células, fabricó una especie de lazo con un fino pelo de bebé (de su hija Margerete) para separarlas, obteniendo tritones gemelos.

5. El procedimiento de clonación de la oveja Dolly se ideó en los años 20 y 30.

La denominación técnica del llamado «método Dolly» es Transferencia Nuclear de Células Somáticas. El nombre puede asustar, pero en realidad es un concepto muy simple. Consiste en sacar el núcleo de una célula del cuerpo (somática) de un individuo, por ejemplo de una célula viva de la piel, y trasplantarlo a un óvulo fecundado (cigoto o huevo) al que previamente se le ha extraído su propio núcleo. El cigoto tiene capacidad para generar un embrión, pero dado que su genoma (contenido en el núcleo que se le ha trasplantado) es el de otro individuo, dará lugar a un clon de ese otro individuo.

La idea es sencilla, pero en la práctica es más complicado. No solo porque requiere instrumentos precisos para manejar células y sus núcleos, sino por un impedimento técnico adicional: el cigoto es una célula no diferenciada, es decir, que es capaz de generar cualquier tipo de tejido del organismo, como neuronas, músculo, hígado, etc. Por el contrario, el núcleo que se le ha implantado es el de una célula diferenciada, en concreto de la piel. Dado que este núcleo ha perdido esa versatilidad, uno de los obstáculos a superar en la clonación es conseguir que ese núcleo se reprograme para recuperar esa capacidad de generar un embrión completo.

Esta idea, la de que un cigoto vacío podía dar lugar a un embrión con el núcleo de una célula más diferenciada, fue intuida y puesta en práctica por Spemann. A partir de 1914, emprendió experimentos en los que recurría a su lazo de pelo de bebé para atarlo fuertemente alrededor de un cigoto de tritón, dividiéndolo en dos células pero de modo que no se separaran por completo, sino que quedaban unidas por un estrecho puente. El núcleo quedaba en una de las dos partes. El científico observó que la célula con el núcleo comenzaba a dividirse, pero no así la vacía. Una vez que la mitad con el núcleo se había dividido varias veces, soltaba el lazo, y así la célula vacía recuperaba el núcleo, ya más diferenciado. Spemann descubrió que entonces esta célula actuaba como un cigoto normal, dando lugar a un segundo embrión.

Método de Spemann y Mangold. Con un lazo de pelo de bebé se divide la célula en dos partes, de modo que el núcleo queda en una de ellas. Esta se divide, pero no así la otra. Cuando el lazo se libera y la parte vacía recupera su núcleo, ambas dan lugar a sendos embriones. Imagen de Spemann 1928, 1936.

Método de Spemann y Mangold. Con un lazo de pelo de bebé se divide la célula en dos partes, de modo que el núcleo queda en una de ellas. Esta se divide, pero no así la otra. Cuando el lazo se libera y la parte vacía recupera su núcleo, ambas dan lugar a sendos embriones. Imagen de Spemann 1928, 1936.

Por este descubrimiento de que el núcleo bastaba para dirigir el desarrollo del embrión, Spemann recibió el premio Nobel de Fisiología o Medicina en 1935. Pero es imprescindible subrayar la contribución a este trabajo de otra persona, su estudiante la zoóloga Hilde Mangold. El trabajo por el que Spemann recibió el Nobel era, tal cual, la tesis doctoral de Mangold, pero por desgracia ella no tuvo ni siquiera la oportunidad de ser discriminada por ser becaria o mujer: en 1924, mientras rellenaba una estufa de petróleo para calentar la comida de su bebé, un derrame de combustible la hizo salir corriendo de la casa envuelta en llamas. Murió al día siguiente. Hoy la teoría de la organización del embrión por el núcleo se conoce como de Spemann-Mangold.

Hans Spemann y Hilde Mangold. Imágenes de Wikipedia.

Hans Spemann y Hilde Mangold. Imágenes de Wikipedia.

Años más tarde, en 1938, Spemann propuso en un libro lo que entonces parecía un experimento fantástico, la Transferencia Nuclear de Células Somáticas, lo que después sería el método Dolly. Sin embargo, el trabajo de Spemann y Mangold fue casi olvidado durante años, tal vez porque provenía de la Alemania nazi. En 1935, cuando Spemann recibió el Nobel, la revista Time publicaba que el premio se había concedido a un «científico nazi». Spemann nunca se afilió al Partido Nacionalsocialista, pero un libro recoge su amistad con el filósofo nazi Heidegger, y refiere un artículo en el que elogiaba el esfuerzo científico del Tercer Reich y bendecía al que llamaba «nuestro Führer». Quien en cambio sí fue miembro del partido y activo defensor del nazismo fue Otto Mangold, marido de Hilde y también estudiante de Spemann. Dado que Hilde murió antes del ascenso de Hitler, tal vez la tragedia la libró de pasar a la historia como científica nazi.

Por último, conviene aclarar que el motivo de las investigaciones de Spemann y Mangold era demostrar cómo el núcleo celular dirigía el desarrollo del embrión, algo que hoy nos resulta evidente, pero por entonces aún ni siquiera se sabía cuál era la sede de la información hereditaria en la célula. Aquellas investigaciones no estaban encaminadas a obtener clones idénticos. Pero como contaré mañana, en décadas posteriores la idea de Spemann se emplearía para obtener los primeros animales clónicos, mucho antes de la oveja Dolly.

¿Son plausibles los alienígenas (parecidos a nosotros) de la ciencia ficción? (II)

Un humano es un organismo con forma de tubo (boca y ano), simetría bilateral, un bloque central que contiene los órganos internos flanqueado por pares de extremidades para la movilidad y la interacción, y un control centralizado (el cerebro) situado en un apéndice específico (la cabeza) que contiene además los principales mecanismos sensoriales.

Desde los hombrecillos verdes o grises hasta las variaciones como los xenomorfos de Alien, infinidad de películas nos presentan seres antropomorfos, que comparten con nosotros estos mismos planos generales de construcción. Pero ¿es esto posible? ¿Es plausible que un alienígena se parezca tanto a nosotros?

Alienígenas de 'Encuentros en la tercera fase'. Imagen de Columbia Pictures.

Alienígenas de ‘Encuentros en la tercera fase’. Imagen de Columbia Pictures.

La respuesta corta es que nadie lo sabe, dado que, una vez más, aún no conocemos alienígena. Para la respuesta larga, debemos comenzar respondiendo a otra pregunta: ¿la evolución es determinista o indeterminista? Es decir: a partir de una situación inicial y si jugamos la partida dos veces, en la Tierra y en otro planeta, ¿cuánto se parecerá el resultado final en los dos casos?

A su vez, la respuesta corta a esta pregunta es que nadie lo sabe. Hay quienes intuyen que un alienígena debería parecerse algo a nosotros, porque… ¿no? Y hay quienes intuyen que debería ser completamente distinto, porque… también, ¿no?

Pero la simple intuición no responde a la pregunta de hasta qué punto un experimento evolutivo paralelo encontraría o no algunas de las mismas soluciones como adaptaciones favorables en un medio parecido o diferente del terrestre. Haría falta repetir el experimento completo de la evolución, primero en nuestra propia Tierra, después en otros planetas habitables.

Por desgracia, esto no está a nuestro alcance. Tal vez algún día la Inteligencia Artificial logre refinar una simulación lo bastante completa como para darnos pistas reales, pero son tantas las variables implicadas que no será tarea fácil aproximarse lo suficiente a un escenario comparable a la realidad. Sería la simulación más complicada jamás emprendida.

A pesar de todo, tampoco estamos completamente perdidos. Tenemos teorías razonables, y tenemos también algunos datos experimentales que pueden tirar algún que otro raíl en el camino hacia estas respuestas. A continuación les cuento algunas de estas pistas, pero ya les adelanto que la conclusión nos devuelve a la respuesta corta: en realidad, nadie lo sabe.

E. T. Imagen de Universal Pictures.

E. T. Imagen de Universal Pictures.

Comencemos por la teoría. En los años 70 Stephen Jay Gould, una de las mentes más preclaras de la biología evolutiva del siglo XX, defendió la hipótesis de que la evolución no es determinista sino imprevisible, y que si pudiéramos rebobinar la cinta del planeta Tierra unos cuantos millones de años y volver a ejecutar el programa, los humanos ni siquiera estaríamos aquí.

Hay que tener en cuenta que toda la vida en la Tierra (al menos la que conocemos hasta ahora) procede de un antepasado común, el cual ya había adoptado ciertas opciones evolutivas que todos hemos heredado. Al ir diversificándose en ramas separadas, estas a su vez también fueron optando por determinadas soluciones que restringían el repertorio de configuraciones de sus descendientes. Pero según la hipótesis de Gould, que siguen muchos otros biólogos evolutivos, si pudiéramos regresar al comienzo quizá la segunda vez se elegirían soluciones diferentes y todos tendríamos, por ejemplo, simetría radial, como los equinodermos (estrellas y erizos de mar).

La teoría de Gould tendería a rechazar la posibilidad de alienígenas antropomorfos. Pero no todos los expertos están de acuerdo con él. Otros biólogos evolutivos, como Richard Dawkins o Simon Conway Morris, piensan que la evolución es al menos en parte un proceso determinista. Es decir, que desde la misma situación de partida, hay sucesos que tienden a repetirse.

Para comprender lo complicado que resulta teorizar sobre esto, tengamos en cuenta que incluso desde enfoques opuestos puede llegarse a conclusiones parecidas, pero también desde un mismo enfoque puede llegarse a conclusiones opuestas. Dos ejemplos: Conway Morris es creyente, Dawkins es ateo, y ambos son deterministas. Conway Morris es determinista, Gould lo contrario, y ambos se basan en las mismas pruebas, el esquisto de Burgess, un conjunto de fósiles hallado en Canadá a comienzos del siglo XX.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

Un fósil de Anomalocaris del esquisto de Burgess. Imagen de Wikipedia / Keith Schengili-Roberts.

La razón principal que suelen esgrimir los deterministas es la evolución convergente. A lo largo de la historia de la vida en la Tierra, ha habido innumerables ocasiones en que la evolución ha encontrado las mismas soluciones en ramas independientes del árbol genealógico de los seres vivos.

Por ejemplo, los murciélagos y las aves tienen alas, pero las desarrollaron de forma independiente. Los ojos de los pulpos son pasmosamente parecidos a los nuestros, pero es evidente que ellos y nosotros no procedemos de un antepasado común con ojos. Este año un estudio descubrió que el apéndice, ese colgajo intestinal al que tradicionalmente no se le suponía otra función que llevarnos a Urgencias, ha surgido en la evolución más de 30 veces de forma independiente en unos animales y otros. ¡Más de 30 veces! Esto no solamente nos dice que muy probablemente el apéndice sirve para algo más, sino que es otro magnífico ejemplo de evolución convergente. El propio Conway Morris ha documentado muchos ejemplos en los fósiles de Burgess.

Así que la teoría no nos ofrece una respuesta clara. Pasemos ahora a la práctica: ¿qué nos dicen los experimentos? Obviamente, no podemos regresar al pasado, volver a jugar la partida de la evolución desde el principio y ver qué ocurre. Pero sí podemos hacer lo segundo mejor: ver qué hace la naturaleza en situaciones de evolución a corto plazo, y diseñar experimentos en condiciones controladas donde puedan estudiarse estos trocitos parciales de evolución.

Sobre lo primero, se han estudiado casos en animales como peces y lagartos. Respecto a lo segundo, hace tres años y medio les conté aquí un precioso ejemplo, un experimento con insectos palo llevado a cabo por el español Víctor Soria-Carrasco en la Universidad de Sheffield (Reino Unido). Los investigadores emplearon un tipo de insecto palo californiano que prácticamente nace, vive y muere en la misma planta, y del que existen dos variedades diferentes adaptadas al camuflaje en dos tipos de arbustos. Intercambiando los bichos de planta en unos lugares y otros, podían comparar los cambios genéticos que se producían entre dos de estos experimentos evolutivos independientes.

El resultado fue que en la evolución de estos bichos palo había un 80% de cambios diferentes y un 20% de cambios comunes. O sea, que a pesar de que mayoritariamente la evolución seguía caminos distintos en dos partidas diferentes, había un 20% de evolución convergente, o un 20% de determinismo evolutivo. Por supuesto que entre este caso y la evolución de la vida en otro planeta media un abismo, pero esta era la especulación de Soria-Carrasco sobre si los alienígenas podrían seguir caminos evolutivos parecidos a los nuestros: «muchas cosas serían diferentes, pero probablemente seríamos capaces de distinguir un tema central que siempre sería el mismo».

El experimento más extenso de la historia de la ciencia para entender cómo funciona la evolución se desarrolla desde hace 30 años en la Universidad de Harvard. En febrero de 1988, el biólogo evolutivo Richard Lenski sembró bacterias Escherichia coli en 12 frascos con medio líquido de cultivo, algo habitual en muchos laboratorios de biología. Pero Lenski dejó a las bacterias la glucosa justa solo para sobrevivir durante la noche hasta la mañana siguiente, y por la tarde recogió a las supervivientes para trasvasarlas a un nuevo cultivo. Así, día tras día, durante más de 29 años.

Con la limitación de alimento, Lenski introducía un factor de presión para dirigir la evolución de las bacterias; tal como hace la selección natural, solo las bacterias mejor adaptadas al medio sobrevivirían. Cada 75 días, lo que equivale a unas 500 generaciones de E. coli, los investigadores congelan una parte de los cultivos para capturar una foto del proceso evolutivo. Analizando los genes de las bacterias en estos distintos momentos del proceso, pueden observar cómo están evolucionando, y comparar las 12 líneas entre sí para analizar si siguen los mismos caminos evolutivos o no. En total, en los casi 30 años del experimento se han sucedido más de 68.000 generaciones de bacterias, lo que equivale a más de un millón de años de evolución humana.

Y después de todo esto, el resultado es…

Durante los primeros miles de generaciones, los investigadores observaron que las bacterias seguían caminos al menos no totalmente separados. Los diferentes cultivos tendían a mostrar mutaciones diferentes, pero en los mismos genes. E incluso con las diferencias, todas mostraban un patrón común: las células se hacían más grandes, crecían más deprisa y aprovechaban mejor la glucosa. Esto parece un claro caso de evolución convergente.

Pero ¡oh, sorpresa! De repente, transcurridas unas 31.000 generaciones, una de las 12 líneas empezó a dejar de lado la glucosa y a comer citrato, otra fuente de carbono presente en el medio. Solo una de las 12 líneas. Dado que una característica de E. coli es la incapacidad de metabolizar el citrato, esta línea está evolucionando por el camino de convertirse en una nueva especie diferente. Y esto parece un claro caso de evolución no determinista.

Con todo esto, ¿qué opinan Lenski y sus colaboradores sobre el grado de determinismo de la evolución? Según su último estudio, esto: «nuestros resultados muestran que la adaptación a largo plazo a un ambiente constante puede ser un proceso más complejo y dinámico de lo que a menudo se asume».

Sí, sí, vuelvan a leer la frase, y la segunda vez les dirá lo mismo: nada. Una paráfrasis para decir que, en realidad, no se sabe. Ya les advertí de que aún no tenemos una respuesta definitiva sobre si Gould o Conway Morris, y por tanto sobre si sería posible que en otro planeta evolucionara una especie básicamente similar a la nuestra. Pero quiero dejarles otro ejemplo de un experimento natural que nos ha permitido observar cómo funciona la evolución. Ese experimento se llama Australia.

La idea, de la que también les hablé aquí, es del científico planetario Charley Lineweaver. Es lo que él llama «la falacia del planeta de los simios», o la idea popular de que, como decía Carl Sagan, en otros planetas habitados debe llegarse a un equivalente funcional del ser humano. Lineweaver pone como ejemplo su propio país, una gran isla separada del resto de los continentes desde hace unos 100 millones de años.

De este modo, Australia ha sido un experimento natural de evolución independiente durante millones de años. Y como decía Lineweaver, ¿qué es lo que ha surgido allí? Canguros. La aparición de los humanos en el gran bloque Eurasiafricano no ha interferido absolutamente de ninguna manera en la evolución australiana. Y sin embargo, allí la evolución no ha producido nada similar a los seres humanos. Si Australia fuera la única tierra seca de todo el planeta, no estaríamos aquí. Y por tanto, no hay evolución convergente; si los canguros tienen brazos y piernas como nosotros, es solo porque el antepasado común que compartimos con ellos ya los tenía.

Por todo lo anterior, los científicos no suelen arriesgarse a inventar aliens, a riesgo de ver su credibilidad dañada. Hay excepciones: en los años 70, Carl Sagan propuso un ecosistema modelo para un planeta joviano, un gigante gaseoso como Júpiter. Sagan imaginó varios linajes de seres voladores que controlarían su flotación a través de los distintos niveles de densidad de la atmósfera, formando una cadena alimentaria cuya base estaría sustentada por una especie de plancton atmosférico que se alimentaría de los nutrientes moleculares presentes en el gas. Así lo contaba Sagan en su mítica serie Cosmos:

Como resumen de todo lo contado aquí, mejor quédense con esta cita del gran maestro Sagan:

La biología es más parecida a la historia que a la física. Hay que conocer el pasado para comprender el presente. No hay predicciones en la biología, igual que no hay predicciones en la historia. La razón es la misma: ambas materias son todavía demasiado complicadas para nosotros. Aunque podemos comprendernos mejor comprendiendo otros casos.

A pesar de todo, si es extremadamente difícil aventurar cómo podría ser un alienígena, en cambio es más posible predecir cómo no podría ser. Como les contaba en la entrega anterior, no todo vale, y con esto podríamos arriesgarnos a construir una lista de reglas que debería cumplir un alienígena de ficción para ser mínimamente plausible. Vuelvan otro día y se lo cuento.

¿Son plausibles los alienígenas de la ciencia ficción? (I)

En una ocasión ya conté aquí que ocurre algo muy curioso con la relación entre cine y ciencia. Mientras que múltiples expertos en mútiples webs suelen llevar las películas de ciencia ficción a la rueda de interrogatorios para destripar su plausibilidad científica y sacar a relucir sus errores, tanto los expertos como los errores suelen ceñirse a la física. En cambio, la biología suele olvidarse. Al fin y al cabo, como aún no tenemos la menor idea de cómo son los alienígenas –si es que existen–, todo vale. ¿No?

Pues no, no todo vale. De hecho, probablemente no valgan más cosas de las que valen. La biología tiene sus propias reglas. En último término, la biología es una aplicación de la física y la química, y aunque el mayor número de variables aumenta la cota de incertidumbre, está claro que hay cosas que no pueden ser de ninguna manera.

Por ejemplo, las críticas científicas de la saga Alien analizan los bocados relativos a las naves, el espacio, la presión, la gravedad y cosas por el estilo. Pero nunca he leído ninguna (aunque probablemente exista sin que yo la haya descubierto) que abra el siguiente y evidente melón: es enormemente cuestionable que un organismo pueda multiplicar su tamaño y peso de forma desmedida en horas o días; pero desde luego, es absolutamente imposible que lo haga sin alimentarse de la materia necesaria para ganar ese aumento de peso y volumen.

Alien: Covenant. Imagen de 20th Century Fox.

Alien: Covenant. Imagen de 20th Century Fox.

La materia no se crea ni se destruye; para que un ser vivo multiplique su peso por diez, necesita incorporar una cantidad de materia aún mayor, teniendo en cuenta que una gran parte de su alimento se excretará en forma de desechos o para mantener funciones básicas como la refrigeración (sudor). Conclusión: a no ser que se inflen simplemente con aire, ni un pulpo, ni un percebe ni un xenomorfo pueden crecer de la nada en unas horitas.

Plantear un alienígena plausible no es tarea fácil, dado que en efecto aún no conocemos ninguno. Pero son tantos los frentes a cubrir, el biofísico, el bioquímico, el bioenergético, el fisiológico, el ecológico o el evolutivo, que casi todo alienígena inventado corre el riesgo de hacer aguas por un lado u otro, incluso en aspectos tan aparentemente nimios como el que ya conté aquí a propósito de Chewbacca: dado que el folículo piloso y la glándula sudorípara son especializaciones de la piel mutuamente excluyentes, los animales peludos (salvo los caballos, un caso peculiar que también comenté) no sudan lo suficiente como para regular su temperatura, por lo que los wookies deberían pasarse toda la saga de Star Wars jadeando como los perros.

Ya, ya, es cierto que George Lucas nunca ha pretendido que Star Wars sea científicamente creíble. (Pero esperen: ¿no era este el mismo tipo que se inventó aquello de los midiclorianos en analogía con la teoría de la endosimbiosis para convertir la Fuerza en, según sus propias palabras, «una metáfora de una relación simbiótica que permite la existencia de vida»?)

Es más; incluso solucionar el problema del frío cubriendo a los alienígenas de una gruesa capa de pelo es cuando menos infundado. Hoy parece suficientemente demostrado que el pelo de los mamíferos y las plumas de las aves proceden evolutivamente de las escamas de los reptiles, y que los genes específicos para fabricar pelo ya existían en estos últimos antes de que engendraran las ramas que darían lugar a los otros dos grupos.

Por lo tanto, los mamíferos no inventaron realmente el material básico del pelo, sino que se limitaron a modificar algo que habían heredado de los reptiles para acomodarlo a sus necesidades (por decirlo de algún modo; entiéndase que la evolución no tiene propósitos ni intenciones); entre ellas, la protección térmica. Esto de aprovechar un invento de la evolución para otro fin diferente al original se conoce en biología como exaptación.

Pero los reptiles en los que surgió el material necesario para crear el pelo vivían en climas cálidos, por lo que originalmente este mecanismo no era un invento contra el frío. En resumen, es probable que una especie alienígena que ha evolucionado en un planeta helado no lleve pelo para abrigarse, sino algún otro tipo de ingenio evolutivo más específicamente adaptado a esa misión.

Recordando los alienígenas de casi cualquier película que nos venga a la mente, es inmediato que suelen fallar en un aspecto u otro, o en todos. Por ejemplo, todo ser complejo tiene una forma definida, ya que es una regla básica de la biología que la complejidad requiere un alto grado de especialización estructural. Así que no es posible cambiar de forma alegremente cada minuto o tomar el aspecto de otros organismos, salvo que seas algo tan poco inteligente como un moho mucilaginoso. Adiós a La cosa y a las múltiples versiones de La invasión de los ultracuerpos.

La cosa (versión de 1982). Imagen de Universal Pictures.

La cosa (versión de 1982). Imagen de Universal Pictures.

Tampoco existen los seres vivos aislados, ni como especies ni como individuos. En su día, el astrofísico Carl Sagan hizo un cálculo de cuántos monstruos del lago Ness podrían existir si existía alguno, aunque aplicó exclusivamente criterios de física de colisiones. Pero además todo organismo necesita lo que en biología se conoce como Población Mínima Viable, un número de ejemplares que permita la supervivencia de la especie con una diversidad genética suficiente como para perpetuarse sin acabar degenerando hasta la extinción. Y toda especie requiere un aporte de biomasa, así que un alienígena viable depende de un ecosistema que le sostiene.

Otro error frecuente es pasear a los alienígenas por el medio terrestre como si estuvieran en su casa. No se trata solo de la respiración de nuestra atmósfera, sino que la Tierra impone una multitud de condiciones ambientales que podrían resultar hostiles y hasta invivibles para una especie surgida en otro planeta diferente, desde nuestra gravedad hasta nuestros niveles de irradiación, o incluso las amenazas biológicas que nosotros hemos aprendido durante millones de años a mantener a raya.

Un ejemplo muy bien concebido de esto último eran los marcianos de H. G. Wells en La guerra de los mundos, que sucumbían a las bacterias terrestres al carecer de nuestra inmunidad. Wells era biólogo, así que ya hace un siglo predecía que el mayor riesgo para un marciano durante una invasión terrestre no serían los humanos, sino las infecciones.

La guerra de los mundos (versión de 2005). Imagen de Paramount Pictures / DreamWorks Pictures.

La guerra de los mundos (versión de 2005). Imagen de Paramount Pictures / DreamWorks Pictures.

En cuanto a las presuntas bioquímicas alternativas propuestas a menudo en la ciencia ficción, a veces son pura fantasía sin el menor sustento científico. El ejemplo más clásico es el silicio como alternativa al carbono. Una regla básica de la vida es que empleamos materia para alimentar nuestros procesos vitales gracias a la energía almacenada en los enlaces químicos de esas sustancias. Como resultado del proceso, generamos compuestos degradados con un nivel energético menor; es una simple resta. Cuando los organismos terrestres consumimos compuestos orgánicos para alimentarnos, producimos agua y dióxido de carbono (CO2) como productos finales. Son los residuos oxidados de la actividad biológica.

El CO2 es un gas a temperatura ambiente, motivo por el cual lo evacuamos fácilmente. Pero aunque el silicio ofrezca una estructura atómica equiparable a la del carbono en sus posibilidades de formar enlaces, algunos de sus compuestos tienen propiedades químicas notablemente diferentes.

Por ejemplo, el dióxido de silicio (SiO2) es sólido; para entendernos, básicamente es arena. Su temperatura de fusión es de 1.713 ºC, y la de ebullición es de 2.950 ºC; nos pongamos como nos pongamos, temperaturas incompatibles con cualquier forma de vida. En la Tierra, muchos organismos emplean SiO2 precisamente por su dureza, como material de construcción o defensa contra depredadores. Pero una situación muy diferente sería producirlo como residuo metabólico, ya que sería muy difícil eliminarlo de forma constante y en grandes cantidades. ¿Imaginan cómo podríamos estar continuamente expulsando arena de nuestros pulmones?

Un alienígena basado en el silicio en el episodio 'The Devil in the Dark' de la serie 'Star Trek' (1967). Imagen de CBS Television Distribution.

Un alienígena basado en el silicio en el episodio ‘The Devil in the Dark’ de la serie ‘Star Trek’ (1967). Imagen de CBS Television Distribution.

En la próxima entrega seguiremos hablando de esta cuestión, entrando en otro de los clásicos de la ciencia ficción: los alienígenas con forma más o menos humana. ¿Es plausible que en un planeta muy diferente del nuestro evolucionen seres antropomorfos?

Ciencia semanal: comer sin gluten puede ser perjudicial para los no celíacos

Una ronda de las noticias científicas más destacadas de la semana.

Gluten-free, solo para celíacos

Hace tan poco tiempo que aún podemos recordarlo, a los celíacos y otros afectados por trastornos metabólicos les costaba encontrar alimentos adaptados a sus necesidades, o al menos encontrarlos a precios asequibles. Por suerte esto fue cambiando, con la intervención destacada de algunos distribuidores. Hoy muchas tiendas y restaurantes ofrecen opciones para celíacos y detallan la idoneidad de sus productos para otros perfiles de trastornos y alergias.

Imagen de @joefoodie / Flickr / CC.

Imagen de @joefoodie / Flickr / CC.

Pero entonces comenzó a producirse un extraño fenómeno, cuando personas perfectamente sanas empezaron a adoptar la costumbre de evitar el gluten en su dieta en la errónea creencia de que es más sano. Y como no podía ser de otra manera, ciertas marcas aprovechan el tirón para fomentar tramposamente esta idea de forma más o menos velada. Mientras, los nutricionistas científicos se tiran de los pelos tratando de desmontar este mito absurdo y sin fundamento.

Estudios anteriores ya han mostrado que el consumo de alimentos libres de gluten no aporta absolutamente ningún beneficio a los no celíacos. Pero ahora estamos avanzando un paso más con la simple aplicación a este caso de un principio general evidente, y es que la restricción de nutrientes en la dieta cuando no hay necesidad de ello solo puede conducir a una dieta deficitaria.

Un estudio con más de 100.000 pacientes a lo largo de 26 años, elaborado en las facultades de medicina de Columbia y Harvard (EEUU) y publicado esta semana en la revista British Medical Journal, confirma que el consumo de gluten en las personas sin celiaquía no aumenta el riesgo de enfermedad coronaria (como sí hace en los celíacos), pero aporta algo más: la reducción del gluten en la dieta disminuye el consumo de grano entero (integral), que se asocia a beneficios en la salud cardiovascular, por lo que la dieta sin gluten puede aumentar el riesgo coronario en los no celíacos.

Los autores son conscientes de las limitaciones de todo estudio epidemiológico, aunque el suyo es muy amplio y excepcionalmente prolongado en el tiempo. Pero como conclusión, advierten: «no debe fomentarse la promoción de dietas libres de gluten entre personas sin enfermedad celíaca».

Cassini, en el meollo de Saturno

Continuamos siguiendo la odisea de la sonda Cassini de la NASA en sus últimos meses de vida, mientras orbita entre Saturno y sus anillos antes de la zambullida que la llevará a su fin el próximo septiembre. La NASA ha publicado esta semana un vídeo elaborado con las imágenes de la atmósfera de Saturno tomadas por la sonda durante una hora de su recorrido alrededor del planeta gigante. Los científicos de la misión se han encontrado con la sorpresa de que la brecha entre Saturno y sus anillos está prácticamente limpia de polvo, al contrario de lo que esperaban.

Ataque al centro de mando del cáncer

Lo que han conseguido estos investigadores de la Universidad de Pittsburgh (EEUU) no es una de esas noticias que acaparan titulares, pero es un hito sobresaliente en la aplicación de una nueva tecnología de edición genómica (corrección de genes por un método de corta-pega) llamada CRISPR-Cas9, de la que se esperan grandes beneficios en las próximas décadas.

Los autores del estudio, publicado en Nature Biotechnology, han logrado por primera vez emplear esta herramienta para neutralizar un tipo de genes del cáncer llamados genes de fusión. Estos se forman cuando dos genes previamente separados se unen por un error genético, dando como resultado un gen de fusión que promueve el crecimiento canceroso de la célula. Los investigadores trasplantaron a ratones células cancerosas humanas que contienen un gen de fusión llamado MAN2A1-FER, responsable de cánceres de próstata, hígado, pulmón y ovarios. Luego introdujeron en los ratones un virus modificado artificialmente que contiene CRISPR, específicamente diseñado para cortar el gen de fusión y reemplazarlo por otro que induce la muerte de la célula.

El resultado fue que todos los ratones sobrevivieron durante el período total del estudio, sin metástasis y con una reducción considerable de sus tumores, mientras que todos los animales de control, a los que se les suministró un virus parecido pero ineficaz contra su gen de fusión, sucumbieron al cáncer.

Una ventaja adicional es que la técnica puede ir adaptándose a la aparición de nuevas mutaciones en las células cancerosas. Según el director del estudio, Jian-Hua Luo, es un ataque al «centro de mando» del cáncer. Y aunque aún queda un largo camino por delante hasta que el método sea clínicamente utilizable, sin duda es una brillante promesa en la lucha contra esta enfermedad.

Decir tacos nos hace más fuertes

Uno de esos estudios que no van a cambiar el curso de la historia, pero que tal vez confirma lo que algunos ya sospechaban; y que sobre todo dará un argumento científico a quienes sientan la necesidad de vomitar tacos, insultos e improperios durante un gran esfuerzo físico (desde deportistas a madres pariendo sin epidural), pero que tal vez se cohíban por aquello de guardar las formas: háganlo sin miedo. Si alguien se lo reprocha, cítenles los resultados presentados por el doctor Richard Stephens, de la Universidad de Keele (Reino Unido), en la Conferencia Anual de la Sociedad Británica de Psicología: gritar palabras malsonantes nos hace más fuertes.

Los investigadores compararon el rendimiento de un grupo de deportistas en pruebas de esfuerzo, sin y con tacos, descubriendo que en el segundo caso las marcas mejoraban. Curiosamente, y aunque la hipótesis de los autores era que este efecto se produciría a través del sistema nervioso simpático, como ocurre con la mayor tolerancia al dolor en estos casos, no encontraron signos que confirmaran esta asociación. «Así que aún no conocemos por qué decir tacos tiene estos efectos en la fuerza y la tolerancia al dolor», dice Stephens. «Todavía tenemos que comprender el poder de las palabrotas».

Los biólogos también queremos alienígenas creíbles

Cuando ayer mencionaba la saga Alien/Prometheus, se me ocurrió pensar que algunos de los autores de ciencia ficción más celebrados han tenido o tienen formación científica. El cine del género, en cambio, y salvando los casos de adaptaciones de libros, suele tirar de guionistas que generalmente no tienen por qué contar con amplios conocimientos de ciencia. Y sin embargo, cada vez es más frecuente que los directores recurran a la asesoría experta para fundamentar sus películas en ciencia real. Ejemplos recientes son Interstellar, The Martian, The Arrival (La llegada) o Ex Machina.

Un xenomorfo de la saga Alien. Imagen de 20th Century Fox.

Un xenomorfo de la saga Alien. Imagen de 20th Century Fox.

Hay una aclaración que suelo hacer a menudo cuando la ciencia ficción salta en una conversación y alguien defiende que la ciencia ficción es fantasía y que, por tanto, todo es posible. Mi aclaración no es mía, sino del maestro Ray Bradbury; quien, por otra parte, decía haber escrito solo una obra de ciencia ficción, Fahrenheit 451. Bradbury distinguía entre ciencia ficción como el arte de lo posible, y fantasía como el arte de lo imposible. Esto tiene un significado claro: según Bradbury, y yo lo secundo, para que una obra sea considerada de ciencia ficción, lo que no sea ficción debe ser ciencia; es decir, que la ficción toma el relevo allí donde la ciencia no llega, pero podría llegar algún día.

Por ejemplo, e insisto en algo incluso sabiendo que no es popular e irrita a muchos: Star Wars no es ciencia ficción sino fantasía, como Harry Potter o El señor de los anillos, dado que la ciencia no aplica en la parte que no es estrictamente ficción. Creo que sobran los ejemplos cuando ni asoman cosas como trajes presurizados, microgravedad o rozamiento de reentrada atmosférica.

Pero se me ocurrió pensar también que hay algo curioso: cuando directores y guionistas consultan con científicos, suelen hacerlo con físicos o ingenieros. En cambio, ¿quién se acuerda de la biología? En el caso de Ex Machina, y como conté en un reportaje, se recurrió a la asesoría del genetista evolutivo Adam Rutherford. Y por supuesto, la saga Parque Jurásico ha contado con el apoyo del paleontólogo Jack Horner.

Pero me da en la nariz que en las películas sobre alienígenas aún no es costumbre buscar el consejo de expertos para retratar seres plausibles. Es cierto que en Alien/Prometheus se ha volcado un esfuerzo por dibujar un diseño fino de la biología de los xenomorfos, incluyendo un complejo ciclo vital. Y dado que tampoco soy un megafriki de la ciencia ficción, no estoy familiarizado con los videojuegos, los cómics y las novelas relacionadas con la saga, fuentes en las que suelen detallarse aspectos que no se desvelan explícitamente en las películas.

Pero sí tengo en casa y he visto muchas veces todos los episodios de la saga, y aún me pregunto cómo se resuelven ciertos aspectos; para empezar, ¿qué comen? ¿Cómo consiguen períodos de latencia tan largos en estado húmedo? ¿Cómo pueden hibridar con los organismos en los que se incuban? ¿Es su construcción anatómica compatible con una gravedad ligera como la de LV-426, y con otra más pesada como la terrestre (que suponemos artificialmente creada en las naves)? ¿Son compatibles la alta calidad y la alta cantidad de descendencia con la antigua teoría de selección r/K? Y todo eso incluso aceptando el fluido interno ácido.

Si hay entre ustedes algún megafan de la saga que tenga respuestas, lo agradeceré. Lo mismo que si conocen ejemplos de alienígenas biológicamente plausibles en el cine que se me hayan escapado. Como he dicho, no soy un experto en el género.

Pero tengan en cuenta que retratar alienígenas científicamente consistentes no es fácil. Hay que tirar de muchas disciplinas: genética, biología evolutiva, bioquímica, ecología, física anatómica, fisiología… Incluso la fisiología humana: ¿cómo es posible que los infectados por el Chestburster (el bicho que sale de dentro) se encuentren perfectamente y no tengan al menos dificultades respiratorias, cuando llevan dentro un cuerpo extraño que claramente está robando espacio a sus pulmones?

Recientemente me he topado con un caso de biología evolutiva (terrestre, claro) que explica cómo los organismos no pueden ser cualquier cosa, ni todo a la vez, sino que están limitados por una serie de factores fisiológicos, ecológicos y evolutivos. Un equipo de investigadores de la Universidad Rockefeller de Nueva York ha desentrañado las señales moleculares que en el embrión deciden si las células de la piel se dedican a la producción de sudor (glándulas sudoríparas) o de pelo (folículos pilosos).

Ambas cosas son mutuamente incompatibles: donde hay glándula sudorípara, no hay folículo piloso. Por eso los primates, con pelo menos denso, somos los seres más sudorosos del mundo (exceptuando, curiosamente, los caballos); y los campeones del sudor somos los humanos, que hemos perdido el vello en la mayor parte de nuestro cuerpo. Pero se supone que el pelo ayuda a la evaporación del sudor, y esto es especialmente útil en lugares como las axilas o los genitales, donde hay comunidades microbianas causantes del mal olor.

Esta evaporación es la que cumple la función crucial del sudor: enfriar el cuerpo cuando se calienta en exceso. Los mamíferos que no sudan tanto como nosotros deben recurrir a otros sistemas, como el jadeo. Pero como este mecanismo no es tan eficiente como el nuestro, el resultado es que los humanos somos corredores de fondo, mientras que otros mamíferos nos superan en velocidad, pero no en resistencia. Curiosamente, una vez más, con la excepción de los caballos, de los que hablaré más abajo.

Así me lo explicaba la directora del estudio publicado en Science, Elaine Fuchs: «La mayoría de los mamíferos necesitan un grueso abrigo de pelo para calentarse y como protección física. Aunque pueden correr más rápido, sus distancias son menores que las de los humanos dotados del sudor, y deben confinarse a ciertos climas. Los humanos abandonamos el grueso abrigo de pelo para tener glándulas sudoríparas; necesitamos abrigos en invierno, pero podemos correr maratones y sobrevivir en climas más extremos gracias a nuestra capacidad de sudar».

Claro que a otros mamíferos también les resultaría ventajoso poder correr distancias mayores, para perseguir a sus presas o huir de sus depredadores. ¿Por qué nosotros hemos podido explotar extensivamente el fantástico mecanismo de aire acondicionado corporal que es el sudor, y no así otros animales? La respuesta es asombrosa: nosotros inventamos la ropa. «Si otros mamíferos no necesitaran sus gruesos abrigos para calentarse en tiempos fríos y como protección, ¡también podrían beneficiarse de las glándulas sudoríparas!», dice Fuchs.

Ventajas como esta son el resultado de la evolución. Según Fuchs, en las especializaciones del tegumento, la piel, «ha habido quizá más prueba y error que en ningún otro órgano o tejido». Otros animales tienen sus propias soluciones a sus propias necesidades, como las plumas o las escamas, pero resulta fascinante que «los apéndices de nuestra piel tienen raíces evolutivas similares a los dentículos y las alas de la mosca de la fruta; cada estructura es útil para el animal que la tiene, y cambiar a una estructura distinta ha tenido una ventaja durante la evolución», me cuenta la investigadora.

Es más: Fuchs cita un maravilloso ejemplo de evolución en acción. «Hay una mutación puntual espontánea en un gen que resulta en un mayor número de glándulas sudoríparas, y que ha ido extendiéndose en la población humana en zonas cálidas y húmedas del sureste de Asia durante los últimos 30.000 años».

Chewbacca. Imagen de 20th Century Fox.

Chewbacca. Imagen de 20th Century Fox.

Un caso interesante es el de los caballos. De acuerdo a la hipótesis de Fuchs, estos animales no han perdido el pelo porque lo necesitan para protegerse del frío y del entorno, pero sí han combinado ambas especializaciones de la piel de los mamíferos para poder sudar y así correr largas distancias. ¿Cómo lo han hecho? Todo apunta a que los responsables somos nosotros: los humanos domesticamos los caballos hace miles de años, y probablemente hayamos ido seleccionando artificialmente las variedades más resistentes a la carrera; aquellas con más capacidad de sudar.

Cuento todo esto para llegar a una conclusión: cuando inventamos seres de ficción, como los alienígenas, debemos tener en cuenta cómo la evolución puede haberlos dotado de los rasgos que proponemos; incluso detalles tan aparentemente nimios como el pelo o el sudor tienen que basarse en ciencia real. Lo cual me trae a la mente un ejemplo: Chewbacca y su raza, los wookiees. Con todo ese pelo es muy improbable que puedan sudar, así que deberían jadear como los perros. Es decir, si queremos que los aliens sean biológicamente creíbles.

Pasen y vean la dolorosísima picadura de la hormiga bala

Algo tienen los animales peligrosos o venenosos que nos repelen y al mismo tiempo nos atraen; como cuando los niños se tapan los ojos para no ver una secuencia de una película que les atemoriza, pero dejando una rendija entre los dedos para no perderse detalle.

La parasitología, con sus escabrosos relatos de repugnantes colonizaciones corporales, es una de las ramas más morbosas de la biología. Y cuando se trata no de parásitos, sino de criaturas picadoras o mordedoras, nos encanta saber cuál duele más, cuál es más venenosa, cuál es más letal, en cuánto tiempo puede matar.

Probablemente más de uno sentiría curiosidad por saber qué se siente, cómo de dolorosa es la picadura de tal bicho, pero la mayoría preferiríamos limitarnos a imaginarlo. Al menos, hasta que llegue el cine 5D o 6D (que ya no sé cuál «D» tocaría) en el que un espectador pueda, si le apetece una experiencia realmente fuerte, pasar por las mismas sensaciones que los personajes de la pantalla, aunque sea por un segundito. Quién sabe, no descarten que algún día lleguemos a verlo.

Pero mientras tanto, hay quienes se ofrecen a sentirlo por nosotros. Hace algo más de dos años les conté aquí el loable esfuerzo en pro de la ciencia de Michael Smith, entonces candidato a doctor por la Universidad de Cornell (EEUU). Durante su trabajo de tesis en sociobiología de las abejas y tras recibir múltiples picaduras accidentales, decidió emprender un estudio paralelo lo más riguroso posible sobre el nivel comparativo de dolor de los aguijonazos en diferentes partes del cuerpo. Ganaron las fosas nasales, el labio superior y el cuerpo del pene; al releer ahora aquel artículo, he recordado que olvidé preguntarle por qué no había incluido el glande, mucho más sensible.

Este morbo nuestro lo explotan bien los documentales de naturaleza en los que ha proliferado la figura al estilo Frank de la Jungla, el tipo que, con más o menos conocimiento de la naturaleza y más o menos sentido de teatralidad especiado con ciertas dosis de exhibicionismo, se pone deliberadamente en grave riesgo ante distintas criaturas de la naturaleza para solaz de quienes lo contemplan desde la seguridad del sofá.

Entre ellos está Coyote Peterson, de quien nada sé, excepto que hace un programa llamado Brave Wilderness y que se ha propuesto experimentar las picaduras de insectos más dolorosas del universo. ¿Y cuáles son las picaduras de insectos más dolorosas del universo?

En esto contamos con la ayuda inapreciable de Justin Orvel Schmidt, entomólogo estadounidense que en 1983 comenzó a clasificar, basándose en su experiencia personal, el dolor infligido por las diferentes especies de himenópteros (hormigas, abejas y avispas) que le han picado a lo largo de su carrera.

Este trabajo hoy se conoce como Índice Schmidt de dolor de las picaduras, pero conviene aclarar que no es una escala científica: la valoración de Schmidt es subjetiva y se basa en picaduras en condiciones no controladas, a diferencia del estudio de su casi homónimo Smith. Aun así, el índice tiene su gracia, al ir acompañado por coloridas descripciones propias de un catador de vinos, que Schmidt reúne en su libro The Sting of the Wild; por ejemplo, en el caso de la picadura de la avispa roja del papel (Polistes canadensis), «cáustica y ardiente, con un regusto final característicamente amargo. Como verter un vaso de ácido clorhídrico en un corte hecho con un papel».

Según Schmidt, hay tres himenópteros (cuatro, según otras versiones) que alcanzan el nivel 4, el más alto de su índice: las avispas del papel del género Synoeca, la avispa cazatarántulas (un avispón del género Pepsis) y, sobre todo, la hormiga bala o isula (Paraponera clavata), un bicho de tres centímetros que alcanza un 4+ y cuya picadura el entomólogo describe así: «dolor puro, intenso, brillante. Como caminar sobre carbones encendidos con un clavo oxidado de ocho centímetros hincado en el talón».

Una hormiga bala (Paraponera clavata). Imagen de Wikipedia.

Una hormiga bala (Paraponera clavata). Imagen de Wikipedia.

Pero cuidado, leerán por ahí que la de la hormiga bala es la picadura de insecto más dolorosa del mundo, o incluso que es el peor dolor posible. No creo que Schmidt haya afirmado jamás tal cosa: su índice solo incluye himenópteros, dejando fuera otros insectos (aquí he hablado de la mosca negra, que en diferido hace bastante más pupa que una avispa), otros bichos no insectos (como arañas o escorpiones), otros animales no bichos (por ejemplo, serpientes) y, por supuesto, toda clase de dolores de otro tipo.

Pero vamos al grano. Gracias al trabajo de Schmidt y de otros entomólogos no tan mediáticos (y a la película Ant-Man, donde la mencionaban), la gigantesca hormiga bala ha sido elevada al trono del dolor supremo. Conocida por diferentes nombres en los distintos países donde habita, en las selvas tropicales de Centro y Suramérica, el apelativo de «bala» le viene de alguien que comparó el dolor de su picadura al de un disparo. Lo cual me hace compadecerme del pobre desgraciado al que le haya tocado en suerte recibir un balazo y ser picado por este bicho. Peor aún, el nombre de hormiga 24 horas que se le otorga en algún país no se debe a que atienda también por las noches, sino a que el sufrimiento extremo provocado por su aguijonazo puede prolongarse durante un día entero.

Y así llegamos al vídeo de Coyote Peterson. Si quieren saltarse los trozos aburridos, en los primeros tres minutos este naturalista con ciertas maneras de vendedor de Galería del Coleccionista nos ofrece flashbacks de sus anteriores picaduras. Luego emprende una búsqueda por la selva costarricense en pos de la hormiga bala, hasta que hacia el minuto 12 llegamos a la parte más jugosa.

Peterson no es el único ni el primero que ha decidido someterse voluntariamente a esta tortura. Les explico: la tribu Sateré-Mawé, en la Amazonia brasileña, practica un cruel rito de paso a la edad adulta consistente en obligar a los niños a que se calcen una especie de manoplas tejidas en las que se inmovilizan hasta 300 hormigas bala, previamente anestesiadas con un brebaje. Cuando las hormigas se despiertan, furiosas por encontrarse presas de la cintura en la urdimbre del guante, comienzan a lanzar aguijonazos. Entonces el niño debe ponerse las manoplas y aguantarlas en sus manos durante diez larguísimos minutos. Y lo peor, no será considerado un verdadero hombre hasta que sufra este ritual un total de 20 veces.

Que se sepa, nadie hasta ahora ha promovido una campaña en contra de esta brutalidad contra la infancia. Y el ritual parece legítimo: he comprobado que se describe en artículos académicos como este, este y este. Pero naturalmente, esto da ocasión para asegurar éxito de audiencia a programas como este del dúo australiano Hamish & Andy, en el que uno de ellos (el «menos hombre» de los dos, a juicio del jefe de la tribu) acepta pasar por la tortura de los guantes.

Claro que no se puede reprochar a Hamish el resistir las manoplas durante solo unos segundos. Pero comparen su aguante con el de este miembro de los Sateré-Mawé que se somete por primera vez a su rito de paso, según filmó National Geographic:

También sorprende el estoicismo de este Frank de la Jungla británico, el naturalista televisivo Steve Backshall:

Pero además de dar ocasión a los Sateré-Mawé para aparecer en los documentales a costa de otro blanquito más que quiere hacerse el machote, la hormiga bala puede ser un fructífero recurso para la ciencia, como ocurre con otros venenos. La poneratoxina, el ingrediente principal del veneno de este insecto, es un potente compuesto neurotóxico paralizante descrito por primera vez en 1990.

Desde el punto de vista biológico es sorprendente cómo un simple péptido (o probablemente varios, según se ha descubierto este año) de solo 25 aminoácidos puede provocar tal caos en el sistema nervioso interfiriendo en las sinapsis neuronales y las uniones neuromusculares. Curiosamente, este último efecto se revertía en un experimento utilizando otra toxina mítica, la tetrodotoxina, la conocida como «toxina zombi» del pez globo.

Actualmente los científicos estudian la ponerotoxina como un posible insecticida biológico, utilizándola para armar a un virus que infecta a los insectos. Aunque como ya imaginarán, aún deberá recorrerse un largo camino para demostrar que esta estrategia es segura y no causa un estropicio para otras especies o el ser humano. También se ha tanteado su uso como posible analgésico.

Les dejo con este último vídeo, en el que la bióloga Corrie Moreau, del Museo Field de Historia Natural de Chicago, ordeña una hormiga bala para extraerle el veneno.

El Nobel salda viejas deudas con acreedores que aún no han muerto

Cuando se concedieron por primera vez los premios Nobel, allá por 1901, si la memoria no me falla (que no, que yo aún no estaba en este mundo por entonces), la ciencia solía ser el empeño de unos cuantos tipos huidizos, recluidos en sus fortines de extraños aparatos; o de gentlemen ociosos con más curiosidad que necesidad de ganarse la vida. Si se celebraba una conferencia y acudían veinte, allí estaban todos los que en el mundo sabían algo sobre el asunto a tratar. Y las revistas científicas de cada disciplina se contaban con los dedos.

En el caso más general, hoy una novela continúa siendo obra de una sola persona. Pero una investigación científica suele ser la suma de decenas, cientos o incluso miles de aportaciones de colaboradores de todo el mundo. Nadie sabe cuántas revistas científicas se editan actualmente en el mundo; una revisión de 2010 estimaba la cifra en torno a 24.000. El número de estudios publicados cada año supera de largo el millón, y la producción científica mundial se duplica cada nueve años. Para un científico joven que comienza a labrarse su carrera, encontrar una línea de investigación que no esté ya cubierta por decenas de potentes grupos es como levantar el pie y encontrar un diamante bajo el zapato.

Conclusión: el formato de los premios Nobel de ciencia es hoy un anacronismo.

La primera consecuencia de este esquema obsoleto es que deja muchos cadáveres en el camino, científicos brillantes incuestionablemente corresponsables del hallazgo reconocido pero que se quedan compuestos y sin premio, porque el Nobel es como máximo un ménage à trois, nunca una orgía.

Ya he comentado algún caso aquí, como el de Jocelyn Bell Burnell, codescubridora del primer púlsar, o el de John Bahcall, autor de la teoría que llevó a la detección de los neutrinos solares. Rosalind Franklin, codescubridora de la estructura del ADN, ya había muerto cuando sus colegas Crick, Watson y Wilkins recibieron el premio. Pero la publicación del archivo histórico de los premios reveló hace unos años la vergonzosa realidad de que nunca llegó a estar nominada.

Yoshinori Ohsumi, Nobel de Medicina o Fisiología 2016. Imagen de Wikipedia.

Yoshinori Ohsumi, Nobel de Medicina o Fisiología 2016. Imagen de Wikipedia.

Con el anuncio esta mañana de la concesión del Nobel de Medicina o Fisiología 2016 al japonés Yoshinori Ohsumi, tal vez un ginecólogo en Texas haya sentido una pequeña punzada en el estómago. La autofagia, el sistema de reciclaje de piezas celulares cuyos mecanismos y genes fueron descubiertos mayoritariamente gracias al trabajo dirigido por Ohsumi (y no sobra ni una palabra en esta subordinada), se basa en el descubrimiento previo de unos orgánulos celulares llamados lisosomas por el belga Christian de Duve, quien acuñó el término “autofagia”. Por su descubrimiento, De Duve, ya fallecido, recibió el Nobel en 1974.

Pero De Duve tenía un becario, un joven médico estadounidense llamado Russell L. Deter, que firmó junto con su jefe los primeros estudios sobre autofagia publicados en los años 60. En una entrevista publicada en 2008 en la revista Autophagy, Deter se pronunciaba con el mayor respeto y admiración hacia su antiguo supervisor; pero con toda humildad, dejaba claro que De Duve estaba a cosas más elevadas, y que la línea de investigación de la autofagia era su línea. Incluso, y según contaba él mismo, De Duve le sugirió que publicara su primer estudio sobre la autofagia exclusivamente con su nombre; lo que él, lógicamente, rechazó.

Russell L. Deter. Imagen de Baylor College of Medicine.

Russell L. Deter. Imagen de Baylor College of Medicine.

Cuando Deter dejó el laboratorio de De Duve para regresar a EEUU, se llevó su línea consigo. Pero según contaba, en 1973 tuvo que dejar el estudio de la autofagia por falta de financiación, ya que por entonces aquello no interesaba a nadie. Al año siguiente, De Duve recibía el Nobel. Deter regresaba a su profesión médica, que hoy continúa ejerciendo como ginecólogo y obstetra especializado en ecografías en la Facultad de Medicina Baylor de Houston. Sin Nobel.

Por otra parte, muchos esperábamos que el nombre de Francis Mojica, microbiólogo de la Universidad de Alicante descubridor del sistema CRISPR, del que después otros han desarrollado la herramienta fundamental de modificación genómica de comienzos del siglo XXI, sonara esta mañana en el anuncio del Nobel de Medicina o Fisiología 2016. Como ya expliqué aquí, y aunque Mojica ha sido nominado y desde luego reúne merecimientos sobrados para llevarse el premio, el día en que los Nobel reconozcan el hallazgo y desarrollo de CRISPR (que llegará tarde o temprano, no lo duden) habrá una dura competencia.

Las principales artífices del sistema, la estadounidense Jennifer Doudna y la francesa Emmanuelle Charpentier, son premio seguro. Pero el tercero podría estar en disputa entre Mojica y otros dos investigadores, el francés Gilles Vergnaud y el estadounidense Feng Zhang. El primero descubrió básicamente lo mismo que Mojica al mismo tiempo, aunque lo publicó más tarde. El segundo aplicó CRISPR como herramienta para células humanas, pero no lo descubrió. Y sin embargo, ambos cuentan con una ventaja: Vergnaud es francés y Zhang trabaja en el MIT. Mojica es de Elche y trabaja en Alicante. Y por desgracia, en ciencia esto cuenta.

Francis Mojica. Imagen de Universidad de Alicante.

Francis Mojica. Imagen de Universidad de Alicante.

Pero ¿cuándo decidirá el comité Nobel premiar el hallazgo de CRISPR? Como ya he explicado aquí, y debido a ese intenso aumento del ritmo de producción científica, se diría que los Nobel acumulan un crónico atraso de deberes que no hace sino aumentar, y que por ello intentan saldar viejas deudas (como conté aquí y aquí) premiando hallazgos de hace décadas antes de que sus responsables abandonen este mundo. En el caso de Ohsumi, sus principales aportaciones datan de los años 90.

Confieso que yo habría dado ya la autofagia por bien premiada, con el Nobel de 1974 a De Duve y el que en 2013 distinguió los hallazgos sobre el tráfico vesicular en la célula. El resto de pioneros en este campo, como Keith Porter y Alex Novikoff, murieron sin premio. Pero quisiera saber qué ha sentido Deter esta mañana. Y en lo que respecta a Mojica… Hey, todavía nos queda el premio de Química este miércoles. Y como dicen por ahí, it ain’t over till the fat lady sings.