Archivo de la categoría ‘Espacio’

Protección planetaria, la política que impide buscar vida en otros mundos

Es curioso que, siendo la búsqueda de vida alienígena uno de los objetivos que cualquiera esperaría de las misiones espaciales, en realidad nunca ha sido así. Como conté ayer aquí, solo ha existido una misión destinada a buscar vida fuera de la Tierra: las dos sondas gemelas Viking de la NASA que exploraron Marte en 1976. De hecho, la búsqueda de vida alienígena no figura como un objetivo específico de la NASA.

Lo cierto es que confirmar la existencia de vida extraterrestre, incluso en el propio Sistema Solar, no es algo sencillo. Si alguna lección enseñaron las Viking, es precisamente la dificultad de diseñar experimentos de detección de vida que lleguen a resultados concluyentes. Pero también es evidente que, si se hubiera continuado en la línea abierta por aquella misión, probablemente se habría perfeccionado la tecnología necesaria. En la época de las Viking aún estaban naciendo las tecnologías de ADN, pero hoy la extracción, amplificación y secuenciación de ADN de microbios son técnicas de uso común.

Por algún motivo, durante décadas la biología ha sido la gran olvidada de las misiones espaciales, dominadas por otras ramas científicas como la astrofísica y las ciencias planetarias. Pero las cosas están cambiando. Hace un año, un informe de las Academias Nacionales de Ciencia, Ingeniería y Medicina de EEUU recomendaba a la NASA “expandir la búsqueda de vida en el universo y hacer de la astrobiología una parte integral de sus misiones”, haciendo notar que hasta entonces las misiones interplanetarias habían estado dominadas por la geología y habían dejado de lado la biología.

Pero existe, además, otro gran impedimento para buscar vida en otros mundos del Sistema Solar. Y no es científico, sino político: la protección planetaria. Por este nombre se conocen las directrices nacidas del Tratado del Espacio Exterior de 1967, y que las agencias espaciales establecen con el fin de evitar que las sondas puedan contaminar otros mundos con microbios terrestres. Entre estas directrices, la NASA incluye la norma de evitar los lugares de Marte más propicios para la vida, que podrían contaminarse con más facilidad. Claro que, si se evitan los lugares más propicios para la vida, ¿cómo va a ser posible encontrar vida?

Autorretrato del rover Curiosity en Marte, tomado en enero de 2018. La imagen es un mosaico de docenas de fotografías con distintos ángulos, lo que permite borrar el propio brazo de la cámara. Imagen de NASA/JPL-Caltech/MSSS.

Autorretrato del rover Curiosity en Marte, tomado en enero de 2018. La imagen es un mosaico de docenas de fotografías con distintos ángulos, lo que permite borrar el propio brazo de la cámara. Imagen de NASA/JPL-Caltech/MSSS.

Con esto ya puede intuirse que la protección planetaria es un asunto debatible y controvertido. Hoy las posturas oficiales, como la política de protección planetaria de la NASA, se sitúan del lado del hiperproteccionismo; es decir, tratar los presuntos hábitats extraterrestres –dando por hecho que existen– con un escrúpulo infinitamente mayor del que se aplicaría al más frágil de los ecosistemas terrestres. Aquí, en casa, los espacios naturales protegidos pueden cerrarse al público si se consideran especialmente vulnerables, pero ¿cómo iba a trabajar la ciencia en favor de su conservación si se la dejara fuera?

Un ejemplo de esta postura extrema es un artículo recientemente publicado por la científica planetaria Monica Grady, a propósito de la sonda israelí Beresheet que el pasado abril se estrelló contra la Luna. Beresheet llevaba una carga de tardígrados, popularmente llamados osos de agua; bichitos microscópicos capaces de sobrevivir en el espacio en una especie de estado de latencia. Grady admitía que probablemente estos animalitos no van a vivir por mucho tiempo en la Luna, pero planteaba la cuestión: ¿y si hubiera sido Marte en lugar de la Luna? “Tenemos la responsabilidad de mantener Marte lo más prístino posible”, escribía la científica.

Esta opinión parece abundar entre los científicos planetarios. En mayo el investigador del Planetary Science Institute Steve Clifford decía a la revista Discover: “En nuestra búsqueda de vida, podríamos ser responsables de la extinción de la primera biosfera alienígena que detectáramos”. En el mismo artículo, la geóloga marciana Tanya Harrison se preguntaba: “Qué ocurriría si dañáramos el mayor descubrimiento de la historia?”.

En el extremo opuesto se sitúan los defensores de la terraformación de Marte: convertir el planeta vecino en un lugar habitable para los humanos, lo que implica modificar profundamente cualquier hábitat nativo que pudiera existir allí. La idea, explorada a menudo por la ciencia ficción, tiene también sus partidarios en la vida real. Este mes, un artículo publicado por tres científicos en la revista FEMS Microbiology Ecology sostiene que “la introducción de microbios [terrestres en otros mundos] no debería considerarse accidental, sino inevitable”, y que la previsible expansión del ser humano a otros mundos aconseja un control sobre este proceso para sembrar microbios beneficiosos, por lo que los investigadores proponen “un programa riguroso para desarrollar y explorar protocolos proactivos de inoculación”.

La diferencia de enfoque está clara: tanto el primer firmante de este artículo, Jose V. Lopez de la Nova Southeastern University de Florida, como sus dos coautores, son biólogos. Obviamente, no es que la biología en pleno vaya a situarse en este lado del debate ni a defender una opción tan radical como la terraformación. Pero sí es cierto que el principio de precaución maximalista esgrimido tradicionalmente por los científicos planetarios ha prescindido de lo que la biología puede aportar al respecto. Y cuando se pregunta a los biólogos, ocurren cosas como esta: el genetista de Harvard Gary Ruvkun decía al Washington Post que la idea de que los microbios residuales que quedan en las sondas esterilizadas vayan a colonizar otro planeta es “de risa, como de los años 50”.

Ruvkun fue precisamente uno de los autores de un informe de las Academias Nacionales de Ciencias, Ingeniería y Medicina de EEUU que el pasado año instaba a la NASA a revisar y actualizar sus políticas de protección planetaria. En respuesta a esta petición de las Academias, la NASA creó un comité para revisar sus directrices. El comité lo dirige un científico planetario, Alan Stern, investigador principal de la misión New Horizons que exploró Plutón; pero por fin entre sus doce miembros se incluyen dos biólogos.

El comité acaba de publicar ahora un documento con sus conclusiones, que recomiendan actualizar la política de protección planetaria de la NASA –e involucrar en ella a los nuevos operadores espaciales privados– teniendo en cuenta el panorama actual y futuro de la exploración espacial, que vaticina un tráfico más intenso de materiales, aparatos y personas entre la Tierra y otros mundos.

Básicamente, el informe recomienda que las políticas se adecúen de forma más flexible a cada situación concreta, y no con el actual criterio de máxima restricción. Por ejemplo, en el caso de Marte se aconseja separar las zonas de exploración humana, donde inevitablemente se introduciría más contaminación, de aquellas de interés astrobiológico, donde debería limitarse la presencia humana y operar mediante sondas robóticas. En cualquier caso, el informe reconoce que la invasión de Marte por microbios terrestres es algo muy improbable.

Lo mismo se aplica a los mundos oceánicos, como Encélado, Europa o Titán, para los que hay misiones planificadas en los próximos años y para los cuales actualmente se exige un nivel de esterilización de las sondas que el informe reconoce como “anacrónico y a veces poco realista” e “innecesariamente conservador”.

En resumen, parece que se avecinan nuevos y buenos tiempos para la astrobiología. O, como mínimo, tiempos en que los astrobiólogos van a tener un papel más relevante en el diseño de las misiones espaciales. Ya se sabe que las cosas de palacio van despacio, y conviene recordar que por el momento no existe ni una sola misión planificada cuyo objetivo directo sea la búsqueda de formas de vida alienígena. Pero para quienes ahora empiecen a estudiar biología o vayan a hacerlo en los próximos años, podría ser la oportunidad, quién sabe, de participar en el mayor descubrimiento científico de la historia.

El día que más cerca estuvimos de hallar vida en Marte

El 30 de julio de 1976 se encontró vida en Marte. O, al menos, eso es lo que lleva defendiendo desde hace 22 años Gilbert Levin, ingeniero responsable de uno de los experimentos de la única misión en la historia de la exploración espacial que ha buscado vida en otro mundo: las dos sondas gemelas Viking 1 y 2, que se posaron en dos lugares de Marte distantes entre sí más de 6.000 kilómetros para responder a la vieja incógnita de si existe algo vivo en el que entonces se creía el segundo mundo más propicio del Sistema Solar para la vida.

Sobre la misión Viking ya he hablado aquí en varias ocasiones. Para la biología es una referencia única, ya que, no está de más repetirlo, a continuación sigue la lista de todas las misiones lanzadas al espacio en busca de vida.

1. Viking.

Y ya. Y por el momento no hay ninguna otra prevista para buscar vida in situ. Así que, quienes se quejan del dinero gastado en la búsqueda de alienígenas, y no empleado para otros fines más urgentes aquí en la Tierra, pueden estar tranquilos: el ser humano no está gastando ni, que esté previsto, va a gastar un solo céntimo en tratar de comprender por vías racionales quiénes somos en el universo; eso sí, seguirá dedicando ingentes cantidades de riqueza a tratar de averiguarlo por vías espirituales, esotéricas y mágicas.

Imagen de la sonda Viking 1 en Marte. Imagen de Roel van der Hoorn / NASA / JPL / Wikipedia.

Imagen de la sonda Viking 1 en Marte. Imagen de Roel van der Hoorn / NASA / JPL / Wikipedia.

Viking fue el producto de un momento de mucha euforia y poco dinero. Tras el éxito de la conquista de la Luna se diseñó un programa llamado Voyager (no relacionado con las dos sondas del mismo nombre que exploran el espacio profundo) cuyo objetivo era enviar aparatos a Marte en los años 70 para preparar el terreno a las misiones tripuladas en los 80. Voyager fue una de las víctimas del brutal hachazo a los presupuestos de la NASA que causó la cancelación del programa Apolo. Y aunque la posibilidad de enviar astronautas a Marte se esfumó por completo, Viking fue una versión más modesta y barata que recuperaba los objetivos científicos de Voyager.

Entre esos objetivos, había uno por encima de todos los demás: buscar vida. También esto era un producto de la euforia del momento: entre los años 60 y 70, había que ser realmente un descreído incurable para pensar que no había vida en otros mundos. La misión Viking iba a por todas, con una serie de instrumentos de la última tecnología de la época, destinados a esclarecer a la primera si había algo vivo en Marte.

Y sí, lo había. Eso fue lo que encontraron Levin y el resto de científicos del experimento de emisión marcada (Labeled Release, LR): las dos Viking, en enclaves muy alejados entre sí, detectaron presunta actividad microbiana.

El LR era muy sencillo en su idea, muy complejo para llevarla a la práctica en un aparato situado en otro planeta que debía funcionar por sí solo. En 1952, Levin había inventado un método para detectar contaminación microbiana en el agua y en los alimentos, que se basaba en el famoso experimento con el que Louis Pasteur refutó la generación espontánea.

Pasteur demostró cómo la entrada de microbios al interior de un matraz podía demostrarse por el efecto de su actividad sobre un caldo de cultivo, y cómo la esterilización por calor eliminaba dicha actividad. De igual modo, el método de Levin consistía en dar alimento a los posibles microbios marcianos y medir después la presencia de compuestos resultantes de ese metabolismo. En el caso del LR, el carbono suministrado era radiactivo con el fin de poder detectarlo (los isótopos radiactivos son un marcaje muy habitual en los experimentos biológicos, porque pitan) si las muestras de suelo marciano emitían CO2, el producto de desecho común en los seres vivos.

Fue aquel 30 de julio cuando Levin y sus colaboradores recibieron los primeros resultados de las Viking, y eran positivos. Había algo en Marte que estaba consumiendo los nutrientes y produciendo CO2. Los resultados aguantaron todos los controles incluidos en el experimento y las pruebas adicionales del sistema realizadas en la Tierra.

La primera imagen tomada en la superficie de Marte, por la sonda Viking 1 el 20 de julio de 1976. Imagen de NASA/JPL.

La primera imagen tomada en la superficie de Marte, por la sonda Viking 1 el 20 de julio de 1976. Imagen de NASA/JPL.

Entonces, ¿caso cerrado? Por desgracia, no. Otro experimento de las Viking encargado de detectar moléculas orgánicas, las que forman todos los seres vivos conocidos, dio resultado negativo, lo que finalmente llevó a la NASA a concluir que los datos del LR eran solo un falso positivo. Pero después de años manteniendo una posición cauta, en 1997 Levin presentó su conclusión definitiva: las Viking habían encontrado vida en Marte.

Desde entonces, Levin ha continuado defendiendo su hipótesis a través de las décadas. Curiosamente, misiones posteriores con aparatos más sensibles han podido confirmar que sí existen moléculas orgánicas en Marte, lo que elimina la objeción por la que en su día se rechazaron los resultados del LR. Pero ¿por qué, a pesar de esto, las conclusiones de Levin no se han aceptado como válidas?

La respuesta está en que, tratándose de una proclama tan extraordinaria, las pruebas deben ser también extraordinarias. Un experimento LR en la Tierra requeriría demostraciones menos exigentes, dado que la existencia de vida aquí es algo sobradamente probado. Pero para admitir que las Viking encontraron vida, antes deberían descartarse por completo y de forma inequívoca todas las hipótesis alternativas; es decir, que la reacción del carbono observada en el LR no se debió a algún proceso puramente químico o geológico en lugar de bioquímico o biológico.

Esto habría podido hacerse si se hubiera seguido trabajando para profundizar en la misma línea, pero no se hizo. Es curioso cómo la línea posterior la ha marcado no un experimento exitoso, sino uno fallido: si las Viking no hubieran fracasado en la detección de las moléculas orgánicas que de hecho sí existen en Marte, es probable que después de aquella misión se hubiera continuado tratando de confirmar la presencia de vida.

Este mes, Levin ha vuelto a la carga, publicando en Scientific American (una revista popular de ciencia, pero no una revista científica) un artículo en el que continúa defendiendo su hipótesis de que las Viking hallaron vida en Marte. Levin recuerda sus resultados, y con mucho acierto escribe: «Inexplicablemente, más de 43 años después de las Viking, ninguna de las sondas posteriores que la NASA ha posado en Marte ha llevado un instrumento de detección de vida para profundizar en estos emocionantes resultados. En su lugar, la agencia ha lanzado una serie de misiones a Marte para determinar si alguna vez existió un hábitat adecuado para la vida, y de ser así, finalmente traer muestras a la Tierra para su examen biológico».

Es decir, rescatando un símil que ya he utilizado aquí, es como analizar si en una casa hay mascotas viendo si existe algún rastro de que hay o hubo en algún momento una caseta de perro, una cama de gato o una jaula de hámster, y buscando en los armarios de la cocina para saber si hay comida de perros, gatos o hámsters, en lugar de mirar directamente si en la casa hay un perro, un gato o un hámster.

También hay que decir que no todos los argumentos de Levin son impecablemente rigurosos. Entre los muchos indicios adicionales que aporta a favor de la vida en Marte, menciona alguno un poco exótico: una imagen tomada por el rover Curiosity, dice, mostraba una formación similar a un gusano. Otras imágenes, añade, parecen mostrar líquenes o estromatolitos (tapetes de microbios fosilizados). Pero aparte del hecho de que pensar que en Marte existen no ya microbios, sino gusanos o líquenes, es algo que muchos no vamos a creernos a no ser que nos los restriguen por la cara, esto no favorece precisamente su tesis; la pareidolia ha sido el argumento tradicional de multitud de ideas pseudocientíficas. Y dejando de lado el clásico de Jesús en la tostada, en Marte ya hemos tenido nuestra buena ración de fotos de caras, bichos, hombrecillos, lagartos e incluso elefantes.

Pareidolia: la imagen de un elefante en la región marciana de Elysium Planitia. Imagen de NASA/JPL/University of Arizona.

Pareidolia: la imagen de un elefante en la región marciana de Elysium Planitia. Imagen de NASA/JPL/University of Arizona.

Por último, Levin añade que en 43 años ningún experimento o teoría ha proporcionado una explicación definitiva no biológica de los resultados del LR. Pero también aquí el autor está cayendo en un argumento popular, pero no científico: es la explicación biológica la que debe probarse.

Pero sí hace notar una gran contradicción, y es que «la NASA mantiene la búsqueda de vida alienígena entre sus prioridades más altas», y a pesar de ello, no hace nada al respecto. Levin cuenta un detalle interesante, y es que propuso a la NASA un experimento para el rover Mars 2020, la próxima misión marciana que se lanzará el año próximo.

La idea de Levin era un instrumento basado en el LR que fuera capaz de detectar la quiralidad de las moléculas. La quiralidad es lo que tienen los guantes: un guante derecho no se transforma en un guante izquierdo cuando lo giramos, porque está fabricado con una quiralidad concreta. Lo mismo sucede con las moléculas de los seres vivos, ya que las enzimas, los catalizadores de los procesos biológicos, utilizan y producen moléculas con una quiralidad concreta, izquierda o derecha.

Si los resultados del LR se debieron a un proceso puramente químico geológico, la quiralidad debería ser arbitraria: se encontrarían tantas moléculas a derechas como a izquierdas. Por el contrario, si se encontrara una quiralidad preferente, sin duda sería una prueba de que hay enzimas implicadas, y que por lo tanto es un proceso biológico. Pero si Levin presentó un proyecto formal, en cualquier caso la NASA no lo seleccionó, porque la carga de instrumentos del Mars 2020 ya está definida y no incluye ningún instrumento biológico.

Pero ¿por qué la NASA no busca vida alienígena, si se supone que es uno de sus objetivos prioritarios? Mañana lo explicaremos.

Experimentos sobre vida alienígena «exótica»: este es el resultado

Una idea muy extendida, cuando se trata de debatir la posibilidad de vida en otros mundos, es que los alienígenas no tendrían por qué parecerse a ninguno de los seres que conocemos aquí en la Tierra, sino que podrían ser tan diferentes que incluso nos costara reconocerlos como algo vivo.

Esta es una hipótesis de por sí irrefutable; no hay manera de demostrar que no pueda ser así. Y aunque en apariencia esto pudiera hacerla más atractiva, en realidad es más bien lo contrario: en ciencia, las hipótesis que no pueden someterse a refutación no tienen interés. De hecho, desde cierto punto de vista ni siquiera pueden considerarse hipótesis científicas.

Imagen de Max Pixel.

Imagen de Max Pixel.

Pero (¡atención, viene una quíntuple negación!) el hecho de que no sea posible probar que no pueda construirse vida radicalmente diferente a la terrestre no significa que no puedan aportarse razones científicas de que esto no es en absoluto probable. Anteriormente he dedicado aquí tres articulitos a contar por qué, con la biología en la mano, los seres vivos no materiales, no basados en el carbono o no dependientes del agua dan buen material para la ciencia ficción, pero siempre conservando el apellido: ficción.

Un ejemplo. Los físicos suelen coincidir en que Interstellar es una película científicamente muy seria y concienzuda, como no podía ser de otra manera, dado que el físico Kip Thorne ha estado involucrado en la producción y el guion. Pero ¿qué ocurre cuando uno le pregunta a un físico teórico si los agujeros de gusano existen? Naturalmente, dicen a veces; dado que son soluciones a las ecuaciones de campo de la relatividad general de Einstein, existen. Pero no, si existen en la realidad, insiste uno. ¿Realidad?, preguntan ellos.

Bromas aparte: lo cierto es que, aunque la mayor parte de la biología sea demasiado compleja como para describirla a través de ecuaciones (quién sabe si la Inteligencia Artificial llegará a ser capaz de hacer algo parecido), en este caso podría decirse que la vida alienígena exótica es incluso más improbable que los agujeros de gusano, dado que ni siquiera en la teoría pura se ha justificado un sistema coherente y científicamente sólido de vida no basada en el carbono o en el agua.

Claro que, suele argumentarse, dado que no nos es posible poner el pie en esos mundos lejanos tan radicalmente distintos a la Tierra, no podemos asegurar que no haya vida en ellos.

Solo que esto no es exactamente así. Imaginemos que pudiéramos ponernos manos a la obra para simular condiciones extremadamente distintas de las terrestres: combinaciones de ingredientes raros, temperaturas gélidas o ardientes, atmósferas con gases venenosos para nosotros, sustratos de todas clases, gravedades aplastantes o livianas, radiaciones estelares achicharrantes o casi inexistentes, sustitutos del agua… Casi todo tipo de variaciones extremas que se nos puedan ocurrir a eso que los científicos, con sus mentes pobremente reduccionistas, llaman «condiciones habitables». Lo metemos todo ello en la Thermomix y esperamos unos cuantos miles de millones de años a ver si sale algo vivo.

Pues bien, ese experimento ya se ha hecho: ante ustedes, les presento el Sistema Solar. ¿El resultado? Que no hay vida compleja en otro lugar más que en la Tierra. Y aunque no podamos asegurar que no haya vida simple en algún otro mundo de nuestro vecindario, si esto existiera, personalmente apostaría solo a dos caballos: Origen Común y Evolución Paralela.

Tomemos como ejemplo Júpiter y Saturno, dos planetas casi tan diferente a la Tierra como pueda llegar a imaginarse. Si fuera posible que en semejantes condiciones raras surgiera la vida, ¿por qué no en Júpiter y Saturno? De hecho, Carl Sagan imaginó un ecosistema joviano formado por varias especies de criaturas flotantes y voladoras que viven y se comen unas a otras. Pero dejando de lado las especulaciones, podemos estar bastante seguros de que en Júpiter no existe una civilización inteligente. Ni muy probablemente nada vivo.

Naturalmente, el hecho de que –que sepamos– no haya vida en Júpiter o en Saturno tampoco descarta por completo que en lugares como Júpiter o Saturno pueda aparecer algo vivo. Merece la pena buscar. Es casi obligado buscar, ya que esta búsqueda siempre aportará resultados valiosos: si no se encuentra nada, un clavo más en el ataúd de la idea sobre la vida “como no la conocemos”. Y si se encuentra algo, el descubrimiento más importante de la historia de la ciencia.

Y a este respecto, hay buenas noticias. Por fin parece que, tras décadas de abandono, la biología está dejando de ser el patito feo de las misiones de exploración espacial. Y en concreto, una misión ya confirmada para los próximos años podría responder a la pregunta de si existe algo vivo en uno de los lugares del Sistema Solar más propicios para la presencia de alguna forma de vida posiblemente exótica. Mañana lo contaremos.

¿Y si no hay nadie más en el universo?

Hace unos días escuché a un tertuliano de radio decir que tal asunto a tal político le interesaba tanto como el ciclo de reproducción del pingüino. Es curioso con qué frecuencia se utilizan ejemplos de la biología, y no por ejemplo de la pintura flamenca o del baloncesto, para denotar las cosas que, al parecer, no deben interesar a ninguna persona interesada en las cosas que deben interesar a todo el mundo; el ciclo de reproducción del pingüino, la cría del mejillón, el ritual de apareamiento del cangrejo australiano…

Y es curioso, porque ni la pintura flamenca ni el baloncesto pueden responder a preguntas verdaderamente trascendentales para la humanidad; mientras que, la biología, sí.

Por ejemplo: ¿estamos solos en el universo? Es una pregunta puramente biológica, a pesar de que los primeros en interesarse científicamente por esta cuestión fueron físicos y matemáticos. Quienes, por cierto, dieron por hecho que la respuesta era “no”, creyendo que la astrofísica y las conjeturas matemáticas bastaban para responder a la pregunta.

¿Un universo vacío? Imagen del telescopio espacial Hubble / Wikipedia.

¿Un universo vacío? Imagen del telescopio espacial Hubble / Wikipedia.

Tratando de ser lo más ecuánime posible, no se me ocurre ninguna otra pregunta más trascendental que esta, exceptuando una: ¿existe (lo que suele llamarse) Dios, o algo más allá de la muerte? Pero dado que esto, en el fondo, pasa por la posibilidad de que pueda existir algún tipo o forma de vida no biológica, llámese como se llame, resulta que volvemos a rozar la biología sin pasar ni de lejos por la pintura flamenca ni por el baloncesto.

Y sí, aunque pueda no parecerlo, esto incluye también el conocimiento del ritual de apareamiento del cangrejo australiano, dado que puede desvelar pistas sobre cómo funciona la evolución, y por tanto la biología terrestre, y por tanto la biología en general, incluyendo la de otros lugares del universo, que debe regirse por las mismas reglas que aquí.

Es difícil aventurar si el descubrimiento de que existe vida en otros lugares cambiaría mucho o poco nuestro mundo. Obviamente, el impacto social sería mucho mayor si se hallara otra civilización inteligente que si solo se encontraran formas de vida simple. Pero incluso teniendo en cuenta que muchos estarán en su perfecto derecho de declarar que les importa tres pimientos la existencia de vida alienígena, con los problemas que ya tenemos en la Tierra y blablablá, el hecho de que parezcan ser mayoría quienes creen en la vida alienígena es un buen motivo para intentar, al menos, presentar la ciencia que revele si esa creencia tiene algún fundamento real.

Y la respuesta es que no; al menos con lo que sabemos hasta ahora, no hay ningún motivo de peso, más allá de la conjetura puramente teórica, para pensar que pueda existir vida en algún otro lugar del universo. Al menos, vida compleja, autoconsciente, tecnológica… Vida como nosotros, casi como nosotros, o muy superior a nosotros. No tenemos ninguna evidencia de ello, y el conocimiento solo puede agarrarse a las evidencias.

Pese a todo, resulta chocante que esta sea la única creencia en el universo de las pseudociencias que un científico puede abrazar y defender sin poner en riesgo su reputación. De hecho, en algunos casos ha servido para construirla o reforzarla: Carl Sagan, Frank Drake, Paul Davis, Seth Shostak, Freeman Dyson…

Sin embargo, en estos años del siglo XXI, algo nuevo está ocurriendo: cada vez es más visible entre los científicos, y puede que más abundante, la idea de que en realidad podríamos estar solos en el universo actual.

(Nota: entiéndase “actual” en sentido einsteniano; es decir, que no existe nadie cuyas señales podamos recibir, o que pueda recibir las nuestras, en el breve periodo de la historia del universo en el que el ser humano existe y existirá. Lo cual no quiere decir que no pueda existir dentro de mucho tiempo en una galaxia muy, muy lejana.)

¿Por qué este cambio? A riesgo de equivocarme, me atrevería a aventurar dos razones: por una parte, la paradoja de Fermi (tanta gente por ahí y nosotros aquí solos) ya empieza a cansar, y hay quienes creen que, atendiendo a la navaja de Ockham, o al sentido común, quizá no haya tal paradoja, sino que sencillamente no haya tales millones de civilizaciones por ahí desperdigadas.

En segundo lugar, los biólogos han irrumpido en el debate. Por supuesto que no hay razón para pensar que el biólogo medio descarte la existencia de vida alienígena, ni muchísimo menos. Es más, la fusión entre biología y vida alienígena ha creado una nueva ciencia, la astrobiología. Pero aunque esta disciplina aporta valiosísimas investigaciones sobre el origen de la vida terrestre y sus límites, probablemente no pocos astrobiólogos lamentan en silencio la posibilidad, cada vez más cercana, de morir sin llegar a ver descubierto el objetivo último de su trabajo. Y por el contrario, haber biólogos que con la biología en la mano no se creen el cuento de los aliens, haylos. Y lo dicen.

Pero no se trata solo de biólogos. Como ejemplo, hoy les traigo un estudio elaborado el año pasado por tres investigadores de la Universidad de Oxford. Aunque los autores anunciaron que lo habían enviado a la revista Proceedings of the Royal Society, hasta donde sé aún no se ha publicado formalmente, pero al fin y al cabo se trata de una aportación teórica especulativa.

Primero, el perfil de los autores: el sueco Anders Sandberg es un transhumanista, neurocientífico computacional de formación; el estadounidense Eric Drexler es ingeniero nanotecnólogo; y el australiano Toby Ord es filósofo ético, interesado sobre todo en la erradicación de la pobreza en el mundo.

Es decir, que a primera vista no hay motivos para pensar que los autores se agarren a argumentos biológicos terracéntricos y reduccionistas (una acusación frecuente) con el fin predeterminado de negar la existencia de vida alienígena. Por el contrario, el trabajo de los autores consiste en revisitar la famosa ecuación de Frank Drake, esa que durante décadas se ha esgrimido para defender que nuestra galaxia debería albergar miles o millones de civilizaciones.

Así, Sandberg, Drexler y Ord escriben que la ecuación de Drake “implícitamente asume certezas respecto a parámetros altamente inciertos”. Para solventar estas incertidumbres, los autores han construido un modelo que incorpora los recorridos químicos y genéticos en el origen de la vida –es decir, la biología–, teniendo en cuenta que “el conocimiento científico actual corresponde a incertidumbres que abarcan múltiples órdenes de magnitud”.

Y este es el resultado: “Cuando el modelo se recompone para representar las distribuciones de incertidumbre de forma realista, encontramos una probabilidad sustancial de que no haya otra vida inteligente en nuestro universo observable”. En concreto, estas son las cifras a las que llegan los autores: entre un 53 y un 99,6% de que no haya nadie más en la galaxia, y entre un 39 y un 85% de que estemos completamente solos en el universo observable.

“Este resultado disuelve la paradoja de Fermi”, escriben. En una presentación de su trabajo disponible en la web, tachan la palabra “paradoja” y la sustituyen por “pregunta”. “¿Dónde están?”, es la pregunta. Y esta es su respuesta: “Probablemente, extremadamente lejos, y muy posiblemente más allá del horizonte cosmológico y eternamente inalcanzables”.

¿Vida inteligente más allá del horizonte cosmológico? ¿Eternamente inalcanzable y, por tanto, incognoscible para nosotros? ¿A qué recuerda esta descripción? Inevitablemente, llega un punto en el que hablar de vida alienígena inteligente llega a ser algo bastante parecido a hablar de… Dios. O a ver si no qué era el 2001 de Arthur C. Clarke.

Bien, agua en otro exoplaneta. ¿Habitable? Siguiente noticia…

Antes de que nadie se ofenda o se altere, una aclaración. Cuando un equipo de investigadores logra curar el alzhéimer en ratones (simulado por los propios experimentadores, ya que los roedores no padecen este mal), se trata de una noticia de notable calado científico que merece destacarse en los medios especializados. Pero si se presenta al público a bombo y platillo como un gran paso hacia la cura del alzhéimer, es algo parecido a una trampa, ya que hasta ahora ninguna de las curas del alzhéimer en ratones ha funcionado en humanos.

Del mismo modo, saber que se ha detectado agua en la atmósfera de un exoplaneta posiblemente habitable –ahora hablaremos de esto– es una primicia que los científicos interesados en la materia aplauden. Pero presentarlo como se está haciendo es tan engañoso como lo de la cura del alzhéimer.

Este es el resumen de la noticia. Dos estudios independientes, dirigidos respectivamente por la Universidad de Montreal (Canadá) y el University College London (UCL) (el primero aún no se ha publicado formalmente, mala suerte para los canadienses), han rastreado los datos del telescopio espacial Hubble y han descubierto la firma espectroscópica del agua en la luz del exoplaneta K2-18b, descubierto en 2015 por el telescopio espacial Kepler. K2-18b es posiblemente una «supertierra», un planeta posiblemente rocoso de ocho veces la masa terrestre y casi tres veces su radio que orbita en torno a la estrella enana roja K2-18, a unos 111 años luz de nosotros. Según el análisis clásico de la distancia a su estrella, K2-18b caería dentro de la denominada zona habitable, y es la primera vez que se detecta la presencia de agua en la atmósfera de un planeta en zona habitable.

Ilustración artística del exoplaneta K2-18b. Imagen de ESA / Hubble, M. Kornmesser.

Ilustración artística del exoplaneta K2-18b. Imagen de ESA / Hubble, M. Kornmesser.

Ahora bien, el hecho de que K2-18b ocupe la zona habitable de su estrella no lo convierte de por sí en un planeta realmente habitable. Para empezar, no hay pruebas de que tenga una superficie rocosa. Por sus características conocidas, los astrónomos aún dudan si situarlo en la categoría de supertierras o en la de subneptunos, ya que podría tratarse de un gigante de hielo similar a Neptuno.

En Twitter, la exoplanetóloga Laura Kreidberg, que no ha participado en los nuevos estudios, apuntaba que la composición atmosférica conocida de K2-18b permite estimar una presión atmosférica en la superficie de unos 10 kilobares, unas 10.000 veces mayor que la terrestre, y una temperatura de unos 3.000 kelvins, más de 2.700 grados centígrados. En resumen, condiciones del todo incompatibles con la vida tal como la conocemos (y no está nada claro que otra sea biológicamente posible, 1, 2 y 3). «La habitabilidad de este planeta se está exagerando en la prensa», dice Kreidberg.

El apunte de Kreidberg refleja una tendencia ahora en alza: numerosos científicos están comenzando a analizar las condiciones de habitabilidad de los exoplanetas desde una perspectiva mucho más amplia que la simple distancia a la estrella y la luminosidad de esta. Y como he explicado aquí anteriormente, al hacerlo están encontrando que un planeta realmente habitable requiere toda una lista de raros requisitos que se cumplen en el caso de la Tierra, pero que será difícil encontrar en otros mundos.

Por último, y para situar también la noticia en su contexto, debería señalarse cuán raro o frecuente es encontrar la presencia de agua en un planeta. Y para ello conviene hacerse una pregunta: ¿cuántos planetas de nuestro Sistema Solar contienen agua?

La respuesta: todos. Y también los planetas enanos, asteroides, cometas…

Sí, es cierto que en Venus hoy el agua es solo residual, aunque fue abundante antes de sufrir el catastrófico efecto invernadero que lo convirtió en la roca asfixiante y ardiente que es hoy. Pero el mensaje a tener en cuenta es que la presencia de agua en un planeta es probablemente lo normal; lo raro es lo contrario.

Anteriormente ya se ha detectado agua en varios exoplanetas gaseosos gigantes, como señalan los propios investigadores del UCL en su nuevo estudio: «En la pasada década, observaciones desde el espacio y desde tierra han descubierto que el H2O es la especie molecular más abundante, después del hidrógeno, en las atmósferas de los planetas extrasolares calientes y gaseosos». Otros estudios ya habían calculado también que el agua será abundante en los exoplanetas de tipo terrestre.

Todo lo anterior no quita ni un ápice de relevancia a los estudios, faltaría más. Pero sí a la manera como se están presentando en los medios, como advierte Kreidberg. La detección de agua en un exoplaneta que no es un gigante gaseoso es una primicia científica, pero ni es la primera vez que se detecta agua en un exoplaneta, ni desde luego K2-18b parece ser de ningún modo «el mejor candidato a exoplaneta habitable».

El día en que Neil Armstrong estuvo a un segundo de morir

El 20 de julio de 1969, Neil Armstrong tuvo que poner en valor sus 20 años de experiencia como piloto para completar el aterrizaje más complicado de su carrera, el primero que no era tal, sino un alunizaje. Al comprobar que el módulo lunar (LEM) Eagle se dirigía a una zona de la superficie que no era practicable, tomó el control de los mandos y corrigió el rumbo para orientarlo hacia un lugar más propicio.

Cuando por fin cortó la propulsión para tomar tierra, a la nave le quedaba combustible para menos de un minuto. Fueron momentos de terror para el centro de control de la misión en Houston. Pero no para los dos astronautas a bordo de aquella jaula con paredes de papel metálico. Realmente aquella gente estaba hecha de una pasta especial, lo que Tom Wolfe llamó “the right stuff”. Porque, en aquellos momentos, muy probablemente Armstrong recordó una situación similar, un año antes, en la que se quedó a un segundo de morir.

Neil Armstrong en el módulo lunar, el 20 de julio de 1969. Imagen de NASA / Edwin E. Aldrin, Jr. / Wikipedia.

Neil Armstrong en el módulo lunar, el 20 de julio de 1969. Imagen de NASA / Edwin E. Aldrin, Jr. / Wikipedia.

En estos días de celebración del medio siglo del primer alunizaje –habría otros cinco más hasta 1972–, a uno, que de costumbre se dedica a escribir sobre cosas como estas, le resulta difícil elegir qué contar hoy. Puede parecer paradójico, pero el caso es que a nadie le gusta repetirse a sí mismo, y en realidad cualquier cosa que un servidor pueda contar hoy ya la ha contado antes infinidad de veces. Para quienes hayan podido acercarse hoy a este rincón de internet en busca de algo sobre la Luna y el Apolo 11, y si les apetece, les apunto aquí algunas cosas que ya he escrito previamente y que quizá les interese leer. Si gustan.

En primer lugar, siempre recomiendo leer la historia del Apolo 1, la primera misión del programa lunar que nunca llegó a despegar del suelo. El 27 de enero de 1967, la nave ardió durante una simulación en la plataforma de lanzamiento, matando a sus tres tripulantes, Virgil Ivan Gus Grissom, Edward Higgins White y Roger Bruce Chaffee. Aquella tragedia dejó al descubierto numerosos errores que se encadenaron para propiciar el desastre, y que se corrigieron a partir de entonces. La muerte de Grissom, White y Chaffee logró que sus compañeros en misiones posteriores volaran en condiciones más seguras. De no haber sido por aquello, tal vez la desgracia habría acaecido en el espacio en alguna otra misión, lo que quizá habría herido de muerte a todo el programa Apolo.

Una historia de signo muy distinto fue la del Apolo 13, la tercera que debía posarse en la Luna. Sobra explicar el famoso “Houston, tenemos un problema” –aunque en realidad fue “Houston, hemos tenido un problema”–, pero merece la pena recordar cómo las mentes brillantes de ingenieros y astronautas y el trabajo en equipo lograron salvar de manera casi milagrosa a James Lovell, Fred Haise y Jack Swigert, que parecían condenados a morir tras una explosión en el módulo de servicio que inició una serie de desafortunados contratiempos durante su vuelo hacia la Luna.

Tampoco es un mal día para recordar a los héroes del bando contrario, que también apostaron sus vidas por alcanzar aquel logro de pisar la Luna. Para ambas potencias en liza era una ambición política estratégica, pero para los protagonistas involucrados era además la culminación de un sueño. El 24 de abril de 1967, tres meses después de la tragedia del Apolo 1, Vladimir Komarov pasaba a la historia como la primera víctima mortal de un vuelo espacial. En su nave Soyuz 1 falló prácticamente todo lo que podía fallar, y Komarov pagó con su vida la urgencia por vencer al enemigo. Pese a todo y en contra de ciertos mitos difundidos, afrontó su muerte con valor y entereza. También al otro lado del telón de acero andaban sobrados de the right stuff.

Y en cuanto a lo que está por venir, parece que la ocasión del 50º aniversario ha servido también para revitalizar los proyectos de regresar a la Luna en los próximos años, aunque aún falta el dinero para hacerlo. Pero ahora la idea ya no consiste en una excursión, sino en una presencia permanente apoyada por la irrupción de nuevas compañías privadas y con la que se pretende explotar los recursos lunares. Se ha hablado bastante del helio-3, un isótopo abundante en la Luna que podría suministrar un combustible para producir energía limpia por fusión nuclear, aunque para muchos expertos es una perspectiva poco realista.

Pero volvamos a Armstrong. Estábamos hablando de cómo su accidentado alunizaje probablemente le recordó el día en que se quedó a un segundo de morir. El 6 de mayo de 1968, algo más de un año antes, y como todos los astronautas del programa Apolo, el veterano piloto acudió a la base aérea de Ellington para entrenarse de cara al alunizaje en el Lunar Landing Research Vehicle (LLRV).

No era posible simular el alunizaje en un vehículo idéntico al Eagle, ya que este estaba concebido para la débil gravedad lunar y además sus materiales eran demasiado frágiles para operar en la Tierra. Así que los ingenieros habían construido el LLRV, lo más parecido posible para que los astronautas se entrenaran; una plataforma voladora que se pilotaba de modo similar al Eagle y que era conocida como la cama volante (flying bedstead), porque recordaba al armazón de una cama antigua. Según contaban, manejar aquel aparato era como mantener un plato sobre el palo de una escoba.

Aquel día, algo falló durante el vuelo de Armstrong. Una fuga de combustible hizo que se apagara uno de los propulsores, y la nave se volvió inestable. El astronauta intentó equilibrarla por todos los medios, pero era inútil. No le quedó otro remedio que eyectar su asiento, lo que hizo aproximadamente un segundo antes de que el aparato se estrellara contra el suelo y estallara en llamas. Este vídeo recoge el momento:

Armstrong se mordió la lengua al impactar contra el suelo. Fue el único daño físico de su momento al borde de la muerte. En cuanto a sus daños emocionales y psicológicos, como se cuenta en el vídeo, un rato después su compañero Alan Bean charlaba con él sin estar enterado del incidente, y a Armstrong ni siquiera le pareció lo suficientemente relevante como para mencionarlo. Cuando después Bean supo de ello, regresó a Armstrong y le preguntó si aquello era cierto. A lo que este respondió: “oh, sí”. The right stuff.

Sin señales de vida alienígena inteligente en 1.327 estrellas cercanas

Hasta 1960 tenía sentido pensar que el universo podía estar lleno de gente; entendiendo por «gente» otros seres con los cuales pudiéramos llegar a comunicarnos de igual a igual. Aquel año fue cuando por primera vez se apuntó una antena hacia el cielo en busca de señales procedentes de otras estrellas. Era como encender la radio por primera vez. Y bien podría haber ocurrido que, al hacerlo, de repente el aparato se hubiera llenado de emisiones alienígenas cuya existencia hasta entonces nos era desconocida.

Sin embargo, no fue esto lo que sucedió, sino todo lo contrario. Aparte de una o dos señales cuya naturaleza no se ha logrado determinar, pero que no han vuelto a repetirse, en 59 años de búsqueda no se ha detectado absolutamente nada que sugiera un origen artificial. De las grandes expectativas de los primeros tiempos, con sus historias de ovnis y sus ficciones alienígenas, se ha pasado a lo que ahora se llama el Gran Silencio: no se recibe nada. No se capta nada. El universo está callado como una tumba. Como si estuviéramos solos. Entonces, ¿por qué cuesta tanto aceptar que simplemente tal vez lo estemos?

El observatorio Parkes, en Australia. Imagen de CSIRO / Wikipedia.

El observatorio Parkes, en Australia. Imagen de CSIRO / Wikipedia.

Posiblemente, el hecho de que una gran parte de la población siga creyendo en un universo lleno de gente se deba en parte a que, en esta cuestión, las malas noticias no suelen divulgarse demasiado. Cada vez que se descubre un exoplaneta «habitable» se le da hueco hasta en los telediarios, incluso si, como he explicado recientemente (aquí, aquí y aquí), a estas alturas ya debería considerarse incorrecto y engañoso llamar «habitable» a un planeta solo porque sus temperaturas previstas toleren la existencia de agua líquida; hasta ahora no se conoce ni un solo planeta que realmente pueda considerarse tan habitable como el nuestro.

Y por el contrario, no suelen contarse las investigaciones cuyos resultados son negativos, aquellas que siguen extinguiendo la esperanza de encontrar a alguien más en el universo. Por ejemplo, cada vez que se anuncia uno de estos nuevos exoplanetas «habitables», los investigadores dedicados a los proyectos SETI (Búsqueda de Inteligencia Extraterrestre, en inglés) suelen orientar sus antenas hacia ellos en busca de alguna posible señal de radio. Y hasta ahora, en todos estos casos los resultados han sido negativos.

Quizá estas noticias negativas deberían divulgarse más para que la visión pseudocientífica no cunda tanto entre la población. La pseudociencia de los aliens y los ovnis no es de las que matan, como sí lo hacen otras; pero puede abrir el camino a las que sí lo hacen. Armar el pensamiento contra las pseudociencias, todas, puede ser una vía para evitar las que sí son potencialmente muy dañinas.

Aquí viene una de esas noticias sobre la vida en el universo que no se contará en los telediarios: el mayor rastreo de la historia en busca de señales con un posible origen inteligente ha inspeccionado hasta ahora 1.327 estrellas cercanas. Y se ha cerrado con las manos vacías: no se ha encontrado absolutamente nada.

La investigación es obra de Breakthrough Listen, una de las ramas de las Iniciativas Breakthrough, el programa fundado por el millonario israelí-ruso Yuri Milner. Desde que hace décadas EEUU suspendió la financiación pública de los proyectos SETI, estos rastreos de señales alienígenas inteligentes se sostienen exclusivamente con fondos privados. Con el fin de dar a estas búsquedas un buen empujón que por fin consiguiera acercarnos a una hipotética civilización extraterrestre, en 2015 Milner –con el apoyo del fallecido Stephen Hawking– destinó 100 millones de dólares a emprender un extenso rastreo.

Esta campaña del Breakthrough Listen, que emplea los radiotelescopios de Green Bank en EEUU y de Parkes en Australia, tiene como objetivo inspeccionar un total de 1.702 estrellas cercanas hasta una distancia máxima de 160 años luz, lo cual debería ser suficiente para detectar alguna señal de origen inteligente, si existiera. Después de tres años de observaciones, el proyecto publica ahora los datos recogidos de una parte sustancial de esta muestra, 1.327 estrellas. Según han contado los responsables, esto supone el mayor conjunto de datos en la historia de los proyectos SETI.

El observatorio Green Bank, en Virginia Occidental (EEUU). Imagen de Jiuguang Wang / Flickr / CC.

El observatorio Green Bank, en Virginia Occidental (EEUU). Imagen de Jiuguang Wang / Flickr / CC.

Pero en ninguna parte de este inmenso volumen de datos, que los responsables del proyecto equiparan a 1.600 años de música en streaming, ha aparecido nada que sugiera un origen inteligente. «Hemos examinado miles de horas de observaciones de estrellas cercanas a través de miles de millones de canales de frecuencias», dice el director del proyecto en el observatorio Parkes, Danny Price. «No hemos encontrado ninguna prueba de señales artificiales externas a la Tierra, pero esto no significa que no haya vida inteligente ahí fuera; puede que aún no hayamos mirado en el lugar correcto, o que no hayamos profundizado lo suficiente para detectar señales débiles».

En cualquier caso, el Breakthrough Listen no solo no se rinde, sino que en los próximos años va a intensificar sus esfuerzos. Con la participación de otros observatorios como el MeerKAT de Sudáfrica, se propone rastrear un millón de estrellas cercanas, todo el plano de nuestra galaxia y otras 100 galaxias próximas, no solo en la banda de radio, sino también en el espectro óptico para buscar posibles señales de láser, además de utilizar sistemas de inteligencia artificial para examinar cualquier tipo de fenómeno astrofísico que no sea fácilmente explicable por causas naturales.

Esperemos que de todo esto surja algo. De no ser así, no solamente habría que recordar aquella cita de Carl Sagan en Contact, «¡cuánto espacio desperdiciado!», por no hablar de los 100 millones de Milner; sino que además pocas dudas cabrían ya de que sería conveniente abrir la puerta grande de las pseudociencias a la creencia en la vida alienígena inteligente.

¿Otra vida (alienígena) es posible? 3: Seres sin agua

Una de las maneras más frecuentes de imaginar otros seres vivos radicalmente diferentes a los terrestres es sustituir el agua por otro líquido que supla sus funciones. Dado que absolutamente toda la vida en la Tierra depende del agua como solvente universal, medio de las reacciones químicas e ingrediente del metabolismo, una criatura que empleara otro líquido alternativo demostraría que puede existir vida “tal como no la conocemos”. Es difícil imaginar de forma científicamente realista nada más alejado de nuestro concepto de vida que un ser capaz de reemplazar el agua por otra sustancia.

Pero ¿es posible? El resumen es este: parece generalmente aceptado que, en las condiciones que solemos entender como habitables, las rarísimas propiedades del agua –que ahora veremos– la convierten en una sustancia insustituible; cualquier otra opción, como decíamos en el caso del silicio frente al carbono, supondría aceptar que la naturaleza es lo suficientemente caprichosa para elegir una opción peor existiendo una mejor, y no es así como funciona. Sin embargo, otros líquidos podrían tal vez servir en condiciones extremas muy distintas de las terrestres. Aunque otra cuestión mucho más dudosa es si podrían sostener formas de vida más compleja que una célula simple.

Ilustración artística de la superficie de Titán. Imagen de Kevin Gill / Wikipedia.

Ilustración artística de la superficie de Titán. Imagen de Kevin Gill / Wikipedia.

Comencemos por el agua: estamos tan acostumbrados a ella que nada de lo que hace nos parece raro. Y sin embargo, si uno cogiera la tabla periódica y tratara de predecir las propiedades del agua a partir de las de sus átomos, se equivocaría por completo. De hecho, el comportamiento del agua es tan extraño que los investigadores aún tratan de comprender por qué actúa de manera tan distinta a lo que se esperaría de su composición química.

Quizá lo más llamativo respecto al agua es que la vida en la Tierra no existiría de no ser por una rarísima propiedad que vemos a diario y a la que no damos ninguna importancia: que el hielo flote. En la naturaleza, todas las sustancias se dilatan al calentarse y se contraen al enfriarse. También el agua; si comenzamos a enfriar agua caliente, observaremos que se contrae. Pero al llegar a los 4 ºC ocurre algo insólito: de repente, empieza a dilatarse, como sabe todo el que alguna vez ha olvidado una botella llena en el congelador. Al congelarse, aumenta de volumen y por tanto se reduce su densidad, motivo por el cual el hielo flota.

Pero ¿qué sucedería si no fuera así? Si, como ocurre con el resto de sustancias, el hielo se hundiera, se formaría más hielo en la superficie que también caería hacia las profundidades. A su vez, el hielo del fondo iría creciendo, hasta que finalmente los océanos quedarían convertidos en un bloque sólido. Ni siquiera el calor de la superficie bastaría para mantener una suficiente provisión de agua líquida en el planeta. No se trata solo de la necesidad de agua para beber: los océanos mantienen el planeta habitable gracias a su inercia térmica, las corrientes que moderan el clima, el efecto invernadero que depende de la propia vida y de los ciclos geológicos sustentados por los mares… Sin todo esto, la Tierra hoy sería un planeta deshabitado, o poblado como mucho por algunos microorganismos simples.

No es la única de las propiedades raras del agua: si el H2O siguiera la pauta normal de compuestos similares con los demás elementos que acompañan al oxígeno en su grupo de la tabla periódica, azufre (H2S), selenio (H2Se) y teluro (H2Te), el agua debería hervir a unos 80 ºC bajo cero y congelarse a -100 ºC. Pero a estas temperaturas serían imposibles, o como mínimo extremadamente lentas, todas las reacciones químicas de las que dependen los procesos metabólicos.

Por suerte para nosotros, no es así. A la presión atmosférica terrestre, el agua se mantiene en estado líquido entre los 0 y los 100 ºC, una franja de temperaturas que no solo es anormalmente ancha, sino que está completamente desplazada respecto a lo que se esperaría de su composición química. Y gracias a ello existe la vida terrestre. Es más, las propiedades anormales del agua solo se manifiestan precisamente en la banda de temperaturas que permiten la única vida que conocemos, lo que no invita precisamente a pensar que este líquido sea solo una de las muchas opciones posibles.

Pero aunque en las condiciones que llamamos habitables no existe otra sustancia líquida que iguale las ventajas del agua, los científicos han especulado con posibles sustitutos en entornos mucho más extremos, en los que la vida basada en el agua sería imposible. El amoniaco (NH3), los hidrocarburos como el metano (CH4), el fluoruro de hidrógeno (HF), el sulfuro de hidrógeno (H2S) o el ácido sulfúrico (H2SO4) son, entre otros, algunos de los compuestos que se han propuesto como posibles alternativas en condiciones muy diferentes a las terrestres.

De entre estas posibilidades, hay una de especial interés. Mientras que en los demás casos se trata de puras especulaciones teóricas que nunca van a poder comprobarse, dado que no se aplican a los mundos a nuestro alcance, para los hidrocarburos simples como el metano y el etano existe un experimento natural relativamente cercano en el que estudiar si puede haber surgido una bioquímica alternativa: Titán.

Ilustración artística de la superficie de Titán. Imagen de NASA / JPL.

Ilustración artística de la superficie de Titán. Imagen de NASA / JPL.

Esta luna de Saturno no solo posee una atmósfera densa y abundancia de materia orgánica, sino que también es el único mundo del Sistema Solar, además de la Tierra, con líquido en su superficie. A las temperaturas gélidas de Titán, el metano y el etano se mantienen en forma líquida, llenando lagos y mares. Bajo la superficie se cree que pueden existir agua y amonio en forma líquida a altas presiones.

Las condiciones de Titán podrían ser propicias para la existencia de bacterias metanógenas independientes del oxígeno y el agua. Así, si la naturaleza pudiera crear vida basada en una bioquímica muy diferente de la terrestre, Titán debería confirmarlo. Por el contrario y si Titán no fuera más que una sopa yerma de nutrientes, o bien sus microbios fueran como los metanógenos terrestres, que emplean oxígeno en forma de CO2 y producen agua, la posibilidad de una bioquímica no acuática no quedaría descartada, pero sí perdería mucha de su credibilidad.

Vale la pena mencionar que una biología basada en los hidrocarburos como solventes es algo mucho más complicado de lo que podría parecer a simple vista. Como con los cubitos de hielo, hay otro fenómeno cotidiano al que no damos importancia, pero que también es esencial para la vida terrestre: la separación del agua y el aceite. Gracias a esta propiedad química pueden existir las células, ya que el agua interior y el agua exterior quedan separadas por una barrera de aceite, la membrana celular.

Pero los hidrocarburos son aceite, así que en este caso debería darse la situación inversa. En un mundo aceitoso en lugar de acuoso, las células deberían poseer una membrana formada por alguna sustancia soluble en agua, pero con la suficiente consistencia como para mantener una barrera estable. Se han aportado modelos teóricos de esto, por ejemplo, basados en un compuesto orgánico polar (soluble en agua) llamado acrilonitrilo que, de hecho, existe en Titán.

Incluso en el caso de Titán, se asume que el carbono sería el bloque fundamental de los seres vivos. Como expliqué ayer, la sustitución de este elemento por otro diferente para construir vida exótica es algo que plantea muy serias objeciones. Algunos científicos como Carl Sagan han concedido la posibilidad de la vida no basada en el agua, pero en cambio han sido mucho más escépticos a la hora de considerar un sustituto para el carbono.

Y dado que las condiciones ambientales ideales para la bioquímica del carbono coinciden con las de la bioquímica del agua, esto nos lleva a una conclusión. En estas condiciones, no hay un reemplazo adecuado para el agua. Y aunque la bioquímica del carbono podría tal vez seguir un camino hipotético con solventes distintos al agua en condiciones extremas, se trata una vez más de un sendero tan tortuoso que difícilmente podría engendrar nada más sofisticado que células simples, sin la organización en estructuras diferenciadas que permite la evolución de vida compleja. Si algo sabemos con seguridad, es que en la superficie de Titán no se aprecia vida macroscópica; no hay vegetación.

No es que la posibilidad de microbios con una bioquímica alternativa carezca de interés; para la biología sería el hallazgo más importante de la historia. Puede merecer la pena buscar vida bacteriana en un lugar de nuestro entorno como Titán; por cierto, el único mundo del Sistema Solar exterior en el que se ha posado una sonda de fabricación humana. Pero en exoplanetas a años luz de distancia que jamás podremos visitar, nunca sabremos con certeza si existen microorganismos exóticos.

Por lo tanto y para el caso de los exoplanetas, restringir la calificación de “habitables” a los muy semejantes a la Tierra no es terracentrismo, sino lo único científicamente sensato. Solo en estos podría encontrarse eso de cuya existencia está convencida una gran parte de la población, los aliens. Que, si realmente existieran, muy probablemente serían bioquímicamente similares a nosotros, al menos en lo básico. Todo lo demás, pensar que puedan existir organismos superiores en unas condiciones ambientales radicalmente distintas a las terrestres, vida inteligente “tal como no la conocemos”, es solo fantasía para la ficción. O pseudociencia para la realidad.

¿Otra vida (alienígena) es posible? 2: La bioquímica alternativa

Según lo que expliqué ayer, cuando se dice que la vida alienígena podría ser muy diferente a la que conocemos aquí en la Tierra, sería conveniente matizar lo que esto no quiere decir: no quiere decir que cualquier cosa sea posible. Si la física es universal, la química es universal, y la biología deriva directamente de la física y la química, ¿bajo qué piedra lleva siglos escondida la presunta prueba de que, en cambio, la biología va por barrios?

Que nadie se adelante a señalar las extremas diferencias entre los organismos que pueblan los distintos barrios terrestres. Porque si algo nos enseñan las únicas pruebas de las que disponemos hasta ahora, las de nuestro propio planeta (que sepamos, el único habitado del universo), es precisamente que la biología tiende a una sorprendente uniformidad, incluso entre entornos tan radicalmente diversos como una selva amazónica y un desierto, o los hielos polares y los infiernos volcánicos.

Una forma de vida basada en el silicio en la serie Star Trek. Imagen de Paramount Television.

Una forma de vida basada en el silicio en la serie Star Trek. Imagen de Paramount Television.

Comencemos por recordar una vez más (que nunca sobra) que en este planeta tan extremadamente habitable, como demuestra el hecho de que está extremadamente habitado, la vida solo ha surgido una única vez –que sepamos– en más de 5.000 millones de años. Así que todos los seres terrícolas somos descendientes de un mismo ancestro, lo que en biología suele conocerse como LUCA (siglas de Last Universal Common Ancestor, o último ancestro universal común), un bicho unicelular que vivió probablemente hace algo menos de 4.500 millones de años.

La aparición de la vida una única vez, y la descendencia de todos los organismos terrestres de un tal LUCA, ya sugieren la idea de que la biología tiene ciertos raíles. Pero si observamos lo que la Tierra ha hecho de ella, descubrimos que existen claros patrones comunes conservados durante miles de millones de años. Todo el mundo ha escuchado alguna vez la enorme similitud genética entre, por ejemplo, los humanos y los chimpancés. Pero quizá no todo el mundo sabe que compartimos en torno a un 60% de nuestros genes con organismos tan distintos a nosotros como una mosca de la fruta o una platanera.

Es más, si nos vamos a organismos tan alejados entre sí como los humanos y las bacterias, descubrimos que también somos, en realidad, sorprendentemente parecidos. Un estudio de 2012 analizó las semejanzas de secuencias entre nuestras proteínas y las de 975 especies de bacterias. Comparar los proteomas (el catálogo de proteínas de una especie) en lugar de los genomas facilita la apreciación del grado de similitud entre especies tan distintas, ya que el genoma se organiza de distinta manera en procariotas (bacterias) y eucariotas (nosotros). Dado que las proteínas son el resultado directo del genoma y las moléculas que construyen tanto las estructuras como las funciones de los organismos, comparar las proteínas permite quitarse de encima esas diferencias de organización genómica que no afectan al producto final.

El estudio descubrió que, en general, menos de un 7% de los fragmentos proteicos de las bacterias no están presentes en el proteoma humano. O dicho al revés y más claro, que si se dividen las proteínas en trocitos cortos (de cuyas secuencias dependen sus funciones), más del 93% de este total de bloques proteicos de las bacterias también aparecen en las proteínas humanas.

Curiosamente, una bacteria tan distinta de nosotros como Thermus thermophilus, un bicho unicelular que crece alegremente en aguas termales a 65 ºC, tiene solo un 3,71% de sus fragmentos proteicos que no están presentes en el proteoma humano. Aunque el enfoque de este estudio no era el evolutivo, sino que se centraba en estudiar la relación entre las semejanzas proteómicas y la capacidad de una bacteria para provocar enfermedades y estimular el sistema inmune, los resultados revelan que somos más parecidos de lo que cabría pensar. Y por supuesto, en realidad ya lo sabíamos incluso sin estudios tan detallados: las bacterias y nosotros tenemos los mismos tipos de moléculas y el mismo funcionamiento molecular básico en nuestras células.

Ahora la pregunta es: ¿cómo de diferentes podrían ser estas moléculas y este funcionamiento molecular básico en otros seres que no desciendan de nuestro LUCA, surgidos en otros planetas con condiciones ambientales muy diversas? Es decir, ¿podrían existir otras bioquímicas alternativas a la terrestre?

La única respuesta cierta es que no lo sabemos. Pero se ha especulado mucho sobre ello. Y entre todas estas especulaciones destaca una sobre las demás: la bioquímica del silicio.

Al silicio se llega por el camino del razonamiento. La bioquímica es un Meccano (no el grupo, el juego de construcción hoy ya muy en desuso) basado en un tipo de pieza central capaz de unirse a la vez a otras cuatro, que pueden ser de diferentes clases, para formar polímeros (cadenas ramificadas de muchos). Estos enlaces deben ser fuertes y estables, pero al mismo tiempo lo suficientemente fáciles de romper, de modo que puedan almacenar energía y liberarla al romperse.

Lo anterior es un esquema básico imprescindible para la vida que difícilmente nadie se atrevería a cuestionar. Sea como sea cualquier forma de vida en el universo, por muy radicalmente diferente a nosotros, para ser una forma de vida deberá cumplir este principio universal. Como expliqué ayer, los seres chorreantes de energía pura o las piedras pensantes son fantasías interesantes para la ficción, pero fuera de las páginas de una novela o del marco de una pantalla caerían en el pozo de las pseudociencias.

En la Tierra, esta pieza básica central del Meccano bioquímico es el carbono, un elemento que cumple a la perfección el perfil ideal. Pero en principio podría haber otras opciones. Eso sí, debemos tener en cuenta que son limitadas: la química es universal; la tabla periódica es la lista de ingredientes del universo, y no hay más. No existe otra química. Por lo tanto, para buscar un sustituto hay que encontrarlo en esa tabla.

Lo más parecido que existe al carbono sin ser el carbono es el silicio. Es por ello que ha sido tradicionalmente el favorito de la ciencia ficción, y a su vez es por esto que muchas personas piensan que realmente el silicio podría ser una buena alternativa al carbono para la vida alienígena «tal como no la conocemos», radicalmente distinta a la terrestre. Y dado que en apariencia el silicio podría ser ventajoso en condiciones de calor extremo, en realidad nuestro concepto de lo que es un planeta habitable, con sus temperaturas moderadas, es solo una basura terracentrista…

Condiciones extremas para la vida en la Tierra: fuentes termales en el Parque Nacional de Yellowstone (EEUU). Imagen de Jim Peaco, National Park Service / Wikipedia.

Condiciones extremas para la vida en la Tierra: fuentes termales en el Parque Nacional de Yellowstone (EEUU). Imagen de Jim Peaco, National Park Service / Wikipedia.

Pero ¿es así? Cuando se analizan las propiedades del átomo de silicio y sus posibilidades de combinación, se descubre que tanto los enlaces que forma entre sí como con otros elementos son notablemente menos estables y robustos que los del carbono, lo que se debe a la configuración de los orbitales de electrones externos, responsables de la formación de dichos enlaces. El átomo de carbono está completo y estable compartiendo sus cuatro electrones externos, mientras que el de silicio no. Es más, las cadenas de silicio son inestables en agua. Es más, el silicio no forma fácilmente los enlaces dobles y triples con otro mismo átomo que son fundamentales en la bioquímica terrestre.

Es más, y por último, toda bioquímica se basa en una transferencia en cadena de la energía que da lugar a residuos, subproductos oxidados cuya energía se ha transferido a otras moléculas para construir partes de los organismos o desempeñar sus funciones. Dada la abundancia del oxígeno en el universo, estas reacciones se producen mediante la unión de los residuos a este elemento: los productos finales básicos de la quema de energía en los seres terrestres son dióxido de carbono (CO2) y agua (H2O). Se da la maravillosa circunstancia de que el CO2 es un gas en un rango amplísimo de condiciones ambientales, por lo que lo eliminamos fácilmente del organismo.

¿Qué ocurre con el silicio? Resulta que el SiO2, el equivalente del CO2, tiene para nosotros un nombre: cuarzo. Es sólido. Arena. Una piedra. Resulta muy difícil imaginar cómo un organismo podría manejarse produciendo constantemente residuos de cuarzo de los que tiene que deshacerse.

En resumen, elegir el silicio como alternativa al carbono es como dar el empleo al segundo mejor candidato. Y la naturaleza no entiende de enchufes. Hay un dato que quizá desconozcan muchos de quienes hablan de la vida basada en el silicio sin profundizar en los datos. Y es que si la naturaleza terrestre hubiera encontrado que el silicio era una verdadera alternativa al carbono, lo habría elegido en lugar de este, por una sencilla razón: en la Tierra, el silicio es unas 220 veces más abundante que el carbono. Y a pesar de ello, la vida escogió a este.

Lo cual no implica que el silicio sea irrelevante, ni muchísimo menos. Como uno de los elementos más abundantes en la Tierra y su corteza, es el soporte de gran parte de la geología terrestre, y a través de sus ciclos se regulan factores tan esenciales como el clima y, por tanto, la habitabilidad de este planeta. Sería difícil imaginar la vida sin el silicio, pero el silicio no forma parte de la vida. Y aunque no pueda descartarse al cien por cien que en otros planetas de condiciones extremas pudiera existir algo parecido a vida rudimentaria basada en el silicio (incluso en el laboratorio se ha experimentado con esto), sostener en las propiedades del silicio la organización de la vida compleja, llegando hasta la vida inteligente, es algo que hasta ahora nadie ha podido fundamentar teóricamente.

Y dado que la vida compleja basada en el carbono, el elemento ideal para la bioquímica, requiere una franja concreta de condiciones ambientales que es a grandes rasgos la que existe en la Tierra, la hipótesis más probable, la que no necesita olvidarse de todo lo que conoce la ciencia actual, es que hablar de planetas habitables basándonos en el nuestro como modelo no es terracentrismo: un planeta habitable para la vida tal como la conocemos es probablemente un planeta habitable, punto. Y como ya he contado aquí, en los últimos años se ha descubierto que los planetas realmente habitables parecen ser muy raros.

Hay un último rincón que merece la pena explorar en esto de las «otras vidas» diferentes a la terrestre, y es el del agua como solvente universal y medio de las reacciones bioquímicas, y como ingrediente esencial de los procesos metabólicos. ¿Podrían existir formas de «vida tal como no la conocemos» basadas en otra cosa que sirva como alternativa al agua? Mañana seguimos.

¿Otra vida (alienígena) es posible? 1: Piedras pensantes y fantasmas

Como comencé a explicar ayer, una de las premisas que dan pie a la idea extendida de un universo rebosante de vida es que esta no tiene por qué ser algo ni remotamente parecido a lo que conocemos aquí en la Tierra. Puede ser tan extraña que incluso nos cueste reconocerla como vida, suele decirse. Y por lo tanto, las condiciones en las que podría prosperar pueden ser tan exóticas y ajenas a nuestro concepto de habitabilidad como se quiera: no hay límites.

Pero ¿es así?

La ciencia ficción dura, la de mayor contenido científico, ha jugueteado mucho con esta idea. Uno de los ejemplos más extremos podemos encontrarlo en la Saga de los Cheela, escrita en los años 80 por el físico estadounidense Robert L. Forward. En sus dos novelas Huevo del dragón y Estrellamoto, Forward creaba un mundo habitado sobre una estrella de neutrones; no cerca de, sino sobre. Difícilmente puede imaginarse un entorno más hostil para la vida que este, un astro cuya gravedad es 67.000 millones de veces más fuerte que la terrestre, con una atmósfera de vapor de hierro y donde la química se produce por la unión entre núcleos atómicos mediante fuerza nuclear fuerte en lugar de la interacción electromagnética de nuestros átomos.

En el mundo de Forward, comenzaba a surgir algo parecido a moléculas con capacidad autorreplicativa, para después dar origen a seres vivos: los cheela, una especie de diminutos discos de medio milímetro de grosor y cinco milímetros de diámetro que no solo reúnen todos los atributos de la vida, sino que además son inteligentes.

Las novelas de Forward fueron y siguen siendo muy apreciadas entre los aficionados a este subgénero duro. Pero aunque su propuesta de vida alienígena exótica resultara muy interesante como juego mental de astrofísica –Forward se inspiró, de hecho, en ideas del astrónomo Frank Drake, fundador de los proyectos SETI o Búsqueda de Inteligencia Extraterrestre–, ¿realmente tiene algún sentido desde el punto de vista biológico?

Por el momento, dejemos aparte la cuestión de la inteligencia, obligatoria para que las novelas de Forward pudieran tener una trama, pero que obviamente no es un requisito para aceptar sus ficticias criaturas como seres vivos. Diminutos discos de hierro que se deslizan sobre su planeta, se reproducen y eventualmente desaparecen, ¿pueden calificarse como vida “tal como no la conocemos”?

Así llegamos al principal problema, y es cómo definir la vida. En la EGB, hoy Primaria, aprendíamos que seres vivos son los que nacen, crecen, se reproducen y mueren. Pero aunque se trate de una buena definición para la comprensión de un niño, no es científicamente válida. Como decía hace años un editorial en la revista Astrobiology Magazine de la NASA, hay cosas que nacen, crecen, se reproducen y mueren, y que no consideramos seres vivos. Un cristal nace, crece, puede reproducirse y eventualmente desaparecer, e incluso moverse en respuesta a estímulos. Pero es una piedra, no un ser vivo. ¿Qué hay de un programa de ordenador? ¿Un incendio forestal? Como notaba aquel artículo, la definición de la vida para un biólogo podría diferir mucho de la de un físico teórico.

Hoy seguimos sin tener una definición común y universalmente aceptada para distinguir lo que está vivo de lo que no. Es más: en aquel artículo, la filósofa Carol Cleland comentaba su entonces reciente estudio teórico en el que argumentaba que tratar de definir la vida es un error, ya que las definiciones nos informan solo sobre el significado de las palabras, y no sobre la naturaleza de lo que representan esas palabras en la realidad (el físico Richard Feynman decía algo parecido sobre la definición de “pájaro”). Según Cleland, lo que necesitamos no es una definición de la vida, sino una teoría general de los sistemas vivos.

Actualmente suele considerarse a algo un ser vivo cuando reúne atributos como crecimiento, metabolismo, homeostasis (regulación de su equilibrio interno), organización, reproducción, adaptación en respuesta a su entorno (lo que incluye evolución y selección natural) y respuesta a estímulos. Pero como hemos visto, cosas que claramente catalogamos como no vivas pueden mostrar algunas de estas funciones. Otras caminan en la frontera; por ejemplo, no hay unanimidad sobre si los virus son o no seres vivos.

Pero con todo lo valiosos y sólidos que resultan argumentos como el de Cleland, lo cierto es que tal vez llegue algún día en que necesitemos una definición concreta de la vida para juzgar si algo hallado en otro planeta puede o no considerarse vivo.

Hace algo más de dos décadas surgió una controversia sobre ciertos restos encontrados en un meteorito marciano. Algunos científicos defendían que eran microfósiles de bacterias, mientras que para otros se trataba simplemente de estructuras de origen geológico. El debate nunca terminó de resolverse, aunque generalmente se acepta que las pruebas eran insuficientes para certificar el hallazgo de microfósiles marcianos (y por cierto, este mismo año se ha reavivado la discusión con otro caso similar).

Estructuras propuestas como microfósiles en el meteorito marciano ALH84001. Imagen de NASA.

Estructuras propuestas como microfósiles en el meteorito marciano ALH84001. Imagen de NASA.

Pero como en aquel genial sketch de Monty Python del ex-loro, nadie discutía entonces si aquellos depósitos estaban o no vivos ahora; la discusión estribaba en si en otro tiempo habían representado seres vivos. No había la menor duda de que hoy son piedras. Incluso sin una definición adecuada de la vida, no hay discusión sobre la distinción entre una piedra y un ser vivo. Si algún día llega a descubrirse en otro planeta algo sobre lo cual un estudio profundo y riguroso deje a los científicos con la duda de si es una piedra o un ser vivo, probablemente se trate de lo primero. Podrá ser un fenómeno geológicamente interesante, pero no será biológicamente interesante.

Y si sobre una estrella de neutrones existieran diminutos discos de hierro que nacen, crecen, se reproducen y mueren, probablemente los consideraríamos piedras, no seres vivos, tal como los cristales de nuestras cuevas. Así pues, si en un entorno inimaginablemente hostil llegara a encontrarse algo inimaginablemente raro que llegara a proponerse como vida radicalmente diferente a la que conocemos hasta ser irreconocible como tal, lo mínimo que puede aventurarse es que para muchos científicos simplemente no sería vida, sino alguna clase de interesante fenómeno físico-químico.

Cristales gigantes de yeso en la cueva de Naica, en México. Imagen de Alexander Van Driessche / Wikipedia.

Cristales gigantes de yeso en la cueva de Naica, en México. Imagen de Alexander Van Driessche / Wikipedia.

Pero no olvidemos un detalle, y es que los Cheela de Forward eran inteligentes. En realidad, todo el argumento de las novelas se sustenta en el hecho de que aquellos seres alienígenas pensaban; de este modo nadie dudaría de que están vivos. Pero aquí es donde Forward abandona la ciencia ficción para entrar en el reino de la fantasía: una pastilla de hierro no puede pensar. No existe nada en la biología que pueda sustentar semejante idea; la biología también tiene sus límites, como la física y la química de las que deriva. Y si un físico tuerce el gesto cuando los personajes de Star Wars se sienten grávidos a bordo del Halcón Milenario, porque la física no funciona así, un biólogo lo tuerce ante la idea de piedras que piensan, porque la biología no funciona así.

Pero con las piedras pensantes no se cierra el capítulo de las propuestas fantasiosas sobre vida extrema radicalmente distinta a como la conocemos. Otro caso frecuente en la ciencia ficción ha sido tratado por autores tan serios como Arthur C. Clarke: los seres no materiales, formados por una especie de energía que chorrea y se mueve a voluntad por el universo.

Pero en la Tierra ya tenemos una palabra para eso: fantasmas. Y dado que hasta ahora nadie ha logrado presentar pruebas fehacientes de su existencia –y no será porque muchos no lo hayan intentado–, algunos preferimos ceñirnos a aquella idea de Carl Sagan, quien aseguraba no tener manera posible de demostrar que en su garaje no se escondía un dragón invisible e indetectable.

Aparte de todo lo anterior, existe otra segunda visión sobre la vida alienígena “tal como no la conocemos”, una menos extrema y con los pies más en el suelo: la que propone bioquímicas alternativas a la nuestra, como los seres vivos basados en el silicio en lugar del carbono. ¿Tiene esto algo más de sentido biológico? Mañana seguimos.