BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Archivo de la categoría ‘Espacio’

Se nos mueren los ‘selenautas’ sin que llegue el relevo

“El desafío de EEUU de hoy ha forjado el destino del hombre del mañana”, dijo Gene Cernan, astronauta de la NASA y el último hombre en caminar sobre la Luna.

El astronauta Gene Cernan, en el módulo lunar durante la misión Apolo 17 en 1972. Imagen de NASA.

El astronauta Gene Cernan, en el módulo lunar durante la misión Apolo 17 en 1972. Imagen de NASA.

Cernan ha muerto a los 82 años, de viejo, sin poder entregar el relevo a nadie. Como antes murieron James Irwin (1991), Alan Shepard (1998), Pete Conrad (1999), Neil Armstrong (2012) y Edgar Mitchell (2016). Seis hombres ya fallecidos que cumplieron el sueño de pisar la Luna, y otros tantos que aún viven: Buzz Aldrin, Alan Bean, David Scott, John Young, Charles Duke y Harrison Schmitt. Los más jóvenes, Duke y Schmitt, cumplirán 82 este año, y todos ellos morirán sin llegar a ver ese relevo, salvo que alcancen una longevidad casi sobrenatural.

Es curioso que la frase de Cernan, concebida como un mensaje hacia el futuro, hoy tenga un regusto antiguo. Claro, por entonces se hablaba del “hombre” en lugar de “la humanidad”. Pero sobre todo, en aquella época nadie podía seriamente imaginar que aquel destino no fuera el del mañana, ni el del pasado mañana, ni el del otro, el otro y el otro. Muchas ficciones futuristas de la época situaban sus predicciones en torno al año 2000. No iban mucho más allá, porque casi nadie sospechaba que mucho más allá quedara ya mucho más allá por alcanzar.

Cernan viajó al espacio tres veces: con el programa Gemini, en el Apolo 10 que orbitó la Luna antes del primer alunizaje, y finalmente como comandante del Apolo 17, la última misión tripulada a la Luna. Durante este viaje se tomó la famosa fotografía de la Tierra llamada “la canica azul”, que mencioné hace unos días.

Cuando Cernan y sus compañeros, Schmitt y Ronald Evans, partieron hacia la Luna en diciembre de 1972, ya sabían que serían los últimos del lote; el plan para la misión Apolo 18 había sido cancelado dos años antes, poniendo fin al programa de exploración tripulada.

Placa de acero que los tripulantes del Apolo 17 dejaron en la Luna en 1972. Imagen de NASA.

Placa de acero que los tripulantes del Apolo 17 dejaron en la Luna en 1972. Imagen de NASA.

Cernan y Schmitt, los dos que descendieron a la superficie lunar mientras Evans se quedaba en órbita pilotando el módulo de mando, dejaron un testimonio que cerraba aquella etapa, una placa de acero con esta inscripción: “Aquí el hombre completó sus primeras exploraciones de la Luna – Diciembre de 1972 d. C. – Que el espíritu de paz en el que vinimos quede reflejado en las vidas de toda la humanidad”. Debajo, las firmas de los tres astronautas, sobre la del hombre que estranguló el programa Apolo hasta la muerte: Richard Nixon, presidente de los Estados Unidos de América.

El caso de Nixon fue curioso. Llegó al despacho oval justo a tiempo para que le cayera en suerte el éxito ajeno, la culminación del programa Apolo impulsado por John F. Kennedy y continuado por Lyndon B. Johnson. Como anécdota, tal vez no resulte raro que Nixon tuviera un discurso preparado por si el Apolo 11 acababa en desastre; aunque sí es curioso que el discurso no fuera genérico, sino que aludiera explícitamente a una circunstancia muy específica: que Armstrong y Aldrin (pero no Collins, que esperaba en la órbita lunar pilotando el módulo de mando) no habían logrado despegar de la Luna y se habían quedado extraviados allí sin posibilidad de rescate. La nota detallaba que el presidente debía telefonear a cada una de las “futuras viudas”.

Y si bien es cierto (como cuenta Jason Callahan en este blog de la Sociedad Planetaria) que Nixon no ordenó directamente la cancelación de las misiones Apolo 18 y posteriores, sí fue suya la decisión de recompensar el éxito del programa recortando un 10% el presupuesto de la NASA. Esto llevó al director de la agencia, Tom Paine, a abandonar los vuelos Apolo para concentrarse en el nuevo programa del transbordador espacial.

Pero Nixon ya había intentado antes cancelar las misiones Apolo 16 y 17, temiendo que un fracaso con peor desenlace que el del Apolo 13 afectara a su reelección en 1972. Ambas misiones culminaron con éxito, y Nixon logró en noviembre de 1972 uno de los triunfos electorales más aplastantes en la historia de su país.

Un mes después de su reelección, mientras la última misión Apolo regresaba a casa, Nixon emitió un comunicado en el que decía: “Esta puede ser la última vez en este siglo que los hombres caminen sobre la Luna”. No eran palabras proféticas, sino una declaración política, ya que esa decisión dependía directamente de él. Nixon cambió radicalmente el rumbo de la NASA, cegando los ambiciosos objetivos de exploración humana para rebajar las metas del programa espacial a cotas más domésticas. Según Callahan, que cita al experto John Logsdon, autor de un libro sobre el programa espacial de Nixon, el interés de este por el transbordador espacial tampoco tenía una finalidad concreta ni estaba respaldado por una estrategia.

Logsdon sostiene que Nixon dio así forma a lo que ha sido la visión de la NASA durante casi el último medio siglo. Una visión que Cernan y otros veteranos del Apolo, como el también fallecido Neil Armstrong, no compartían. Ambos se opusieron públicamente a la cancelación en 2010 del programa Constellation por el casi ya expresidente Barack Obama. Constellation tenía como objetivo regresar a la Luna antes del fin de esta década, algo que quizá los últimos supervivientes del programa Apolo habrían llegado a ver.

Lo cierto es que Obama no pudo jugar con otras cartas: no había fondos suficientes para metas tan altas, y además al presidente saliente le ha tocado vivir tiempos más prosaicos. El programa Apolo subió de la nada a la Luna en diez años. El nuevo programa de naves tripuladas de la NASA, Orión, lleva dando vueltas desde la pasada década y no admitirá pasajeros al menos hasta comienzos de la próxima, pero solo para amagar una vuelta a la Luna y regresar. Poner el pie de nuevo allí no está en el horizonte, y de Marte ya ni hablamos. Si al menos tuvieran razón los demagogos, y la cancelación de las misiones tripuladas al espacio profundo hubiera servido para eliminar el hambre en la Tierra…

Los biólogos también queremos alienígenas creíbles

Cuando ayer mencionaba la saga Alien/Prometheus, se me ocurrió pensar que algunos de los autores de ciencia ficción más celebrados han tenido o tienen formación científica. El cine del género, en cambio, y salvando los casos de adaptaciones de libros, suele tirar de guionistas que generalmente no tienen por qué contar con amplios conocimientos de ciencia. Y sin embargo, cada vez es más frecuente que los directores recurran a la asesoría experta para fundamentar sus películas en ciencia real. Ejemplos recientes son Interstellar, The Martian, The Arrival (La llegada) o Ex Machina.

Un xenomorfo de la saga Alien. Imagen de 20th Century Fox.

Un xenomorfo de la saga Alien. Imagen de 20th Century Fox.

Hay una aclaración que suelo hacer a menudo cuando la ciencia ficción salta en una conversación y alguien defiende que la ciencia ficción es fantasía y que, por tanto, todo es posible. Mi aclaración no es mía, sino del maestro Ray Bradbury; quien, por otra parte, decía haber escrito solo una obra de ciencia ficción, Fahrenheit 451. Bradbury distinguía entre ciencia ficción como el arte de lo posible, y fantasía como el arte de lo imposible. Esto tiene un significado claro: según Bradbury, y yo lo secundo, para que una obra sea considerada de ciencia ficción, lo que no sea ficción debe ser ciencia; es decir, que la ficción toma el relevo allí donde la ciencia no llega, pero podría llegar algún día.

Por ejemplo, e insisto en algo incluso sabiendo que no es popular e irrita a muchos: Star Wars no es ciencia ficción sino fantasía, como Harry Potter o El señor de los anillos, dado que la ciencia no aplica en la parte que no es estrictamente ficción. Creo que sobran los ejemplos cuando ni asoman cosas como trajes presurizados, microgravedad o rozamiento de reentrada atmosférica.

Pero se me ocurrió pensar también que hay algo curioso: cuando directores y guionistas consultan con científicos, suelen hacerlo con físicos o ingenieros. En cambio, ¿quién se acuerda de la biología? En el caso de Ex Machina, y como conté en un reportaje, se recurrió a la asesoría del genetista evolutivo Adam Rutherford. Y por supuesto, la saga Parque Jurásico ha contado con el apoyo del paleontólogo Jack Horner.

Pero me da en la nariz que en las películas sobre alienígenas aún no es costumbre buscar el consejo de expertos para retratar seres plausibles. Es cierto que en Alien/Prometheus se ha volcado un esfuerzo por dibujar un diseño fino de la biología de los xenomorfos, incluyendo un complejo ciclo vital. Y dado que tampoco soy un megafriki de la ciencia ficción, no estoy familiarizado con los videojuegos, los cómics y las novelas relacionadas con la saga, fuentes en las que suelen detallarse aspectos que no se desvelan explícitamente en las películas.

Pero sí tengo en casa y he visto muchas veces todos los episodios de la saga, y aún me pregunto cómo se resuelven ciertos aspectos; para empezar, ¿qué comen? ¿Cómo consiguen períodos de latencia tan largos en estado húmedo? ¿Cómo pueden hibridar con los organismos en los que se incuban? ¿Es su construcción anatómica compatible con una gravedad ligera como la de LV-426, y con otra más pesada como la terrestre (que suponemos artificialmente creada en las naves)? ¿Son compatibles la alta calidad y la alta cantidad de descendencia con la antigua teoría de selección r/K? Y todo eso incluso aceptando el fluido interno ácido.

Si hay entre ustedes algún megafan de la saga que tenga respuestas, lo agradeceré. Lo mismo que si conocen ejemplos de alienígenas biológicamente plausibles en el cine que se me hayan escapado. Como he dicho, no soy un experto en el género.

Pero tengan en cuenta que retratar alienígenas científicamente consistentes no es fácil. Hay que tirar de muchas disciplinas: genética, biología evolutiva, bioquímica, ecología, física anatómica, fisiología… Incluso la fisiología humana: ¿cómo es posible que los infectados por el Chestburster (el bicho que sale de dentro) se encuentren perfectamente y no tengan al menos dificultades respiratorias, cuando llevan dentro un cuerpo extraño que claramente está robando espacio a sus pulmones?

Recientemente me he topado con un caso de biología evolutiva (terrestre, claro) que explica cómo los organismos no pueden ser cualquier cosa, ni todo a la vez, sino que están limitados por una serie de factores fisiológicos, ecológicos y evolutivos. Un equipo de investigadores de la Universidad Rockefeller de Nueva York ha desentrañado las señales moleculares que en el embrión deciden si las células de la piel se dedican a la producción de sudor (glándulas sudoríparas) o de pelo (folículos pilosos).

Ambas cosas son mutuamente incompatibles: donde hay glándula sudorípara, no hay folículo piloso. Por eso los primates, con pelo menos denso, somos los seres más sudorosos del mundo (exceptuando, curiosamente, los caballos); y los campeones del sudor somos los humanos, que hemos perdido el vello en la mayor parte de nuestro cuerpo. Pero se supone que el pelo ayuda a la evaporación del sudor, y esto es especialmente útil en lugares como las axilas o los genitales, donde hay comunidades microbianas causantes del mal olor.

Esta evaporación es la que cumple la función crucial del sudor: enfriar el cuerpo cuando se calienta en exceso. Los mamíferos que no sudan tanto como nosotros deben recurrir a otros sistemas, como el jadeo. Pero como este mecanismo no es tan eficiente como el nuestro, el resultado es que los humanos somos corredores de fondo, mientras que otros mamíferos nos superan en velocidad, pero no en resistencia. Curiosamente, una vez más, con la excepción de los caballos, de los que hablaré más abajo.

Así me lo explicaba la directora del estudio publicado en Science, Elaine Fuchs: “La mayoría de los mamíferos necesitan un grueso abrigo de pelo para calentarse y como protección física. Aunque pueden correr más rápido, sus distancias son menores que las de los humanos dotados del sudor, y deben confinarse a ciertos climas. Los humanos abandonamos el grueso abrigo de pelo para tener glándulas sudoríparas; necesitamos abrigos en invierno, pero podemos correr maratones y sobrevivir en climas más extremos gracias a nuestra capacidad de sudar”.

Claro que a otros mamíferos también les resultaría ventajoso poder correr distancias mayores, para perseguir a sus presas o huir de sus depredadores. ¿Por qué nosotros hemos podido explotar extensivamente el fantástico mecanismo de aire acondicionado corporal que es el sudor, y no así otros animales? La respuesta es asombrosa: nosotros inventamos la ropa. “Si otros mamíferos no necesitaran sus gruesos abrigos para calentarse en tiempos fríos y como protección, ¡también podrían beneficiarse de las glándulas sudoríparas!”, dice Fuchs.

Ventajas como esta son el resultado de la evolución. Según Fuchs, en las especializaciones del tegumento, la piel, “ha habido quizá más prueba y error que en ningún otro órgano o tejido”. Otros animales tienen sus propias soluciones a sus propias necesidades, como las plumas o las escamas, pero resulta fascinante que “los apéndices de nuestra piel tienen raíces evolutivas similares a los dentículos y las alas de la mosca de la fruta; cada estructura es útil para el animal que la tiene, y cambiar a una estructura distinta ha tenido una ventaja durante la evolución”, me cuenta la investigadora.

Es más: Fuchs cita un maravilloso ejemplo de evolución en acción. “Hay una mutación puntual espontánea en un gen que resulta en un mayor número de glándulas sudoríparas, y que ha ido extendiéndose en la población humana en zonas cálidas y húmedas del sureste de Asia durante los últimos 30.000 años”.

Chewbacca. Imagen de 20th Century Fox.

Chewbacca. Imagen de 20th Century Fox.

Un caso interesante es el de los caballos. De acuerdo a la hipótesis de Fuchs, estos animales no han perdido el pelo porque lo necesitan para protegerse del frío y del entorno, pero sí han combinado ambas especializaciones de la piel de los mamíferos para poder sudar y así correr largas distancias. ¿Cómo lo han hecho? Todo apunta a que los responsables somos nosotros: los humanos domesticamos los caballos hace miles de años, y probablemente hayamos ido seleccionando artificialmente las variedades más resistentes a la carrera; aquellas con más capacidad de sudar.

Cuento todo esto para llegar a una conclusión: cuando inventamos seres de ficción, como los alienígenas, debemos tener en cuenta cómo la evolución puede haberlos dotado de los rasgos que proponemos; incluso detalles tan aparentemente nimios como el pelo o el sudor tienen que basarse en ciencia real. Lo cual me trae a la mente un ejemplo: Chewbacca y su raza, los wookiees. Con todo ese pelo es muy improbable que puedan sudar, así que deberían jadear como los perros. Es decir, si queremos que los aliens sean biológicamente creíbles.

Esto es lo más cerca que estaremos de aterrizar en otro mundo

Para los locos a quienes nos encantaría vivir la experiencia de aterrizar en un nuevo mundo, pero que nunca tendremos esa oportunidad, nos queda el magro consuelo de volver a ver una y otra vez en la gran pantalla algunas películas que lo han simulado con gran realismo. Sobre todo las de la saga Alien/Prometheus, que nos han mostrado un descenso oscuro a la exoluna LV-426 en Alien, otro turbulento a la misma luna en Aliens, y uno grandioso a LV-223 en Prometheus.

Para esta última, según contaba io9, el equipo artístico se inspiró en imágenes reales de la NASA y consultó con expertos en exoplanetas de la propia agencia. Y es evidente que orientar la fantasía con algo de ciencia genuina, aunque solo sea en la estética (ya tendremos tiempo de hablar del resto en mayo, cuando se estrene Alien: Covenant) hace las cosas mucho más ilustrativas y creíbles.

Imagen de la superficie de Titán tomada por la sonda Huygens. ESA/NASA/JPL/University of Arizona.

Imagen de la superficie de Titán tomada por la sonda Huygens. ESA/NASA/JPL/University of Arizona.

Pero a la espera de que alguien se decida a facilitarnos un aterrizaje extraterrestre por realidad virtual, no hay nada tan estremecedor como lo real. La NASA y la ESA han publicado sendos vídeos que les traigo y que se han confeccionado utilizando imágenes reales tomadas en 2005 por la sonda europea Huygens durante su descenso de dos horas y media a la superficie de Titán, la luna más grande de Saturno.

Ya he contado aquí antes que, en mi sola y humilde opinión, Huygens ha sido hasta ahora el mayor logro en toda la historia de nuestra Agencia Europea del Espacio (ESA) (lástima de Schiaparelli). La sonda se lanzó en 1997 como misión conjunta con la Cassini de la NASA. Ambas emprendieron juntas un gran viaje por el Sistema Solar desde Venus a Júpiter antes de llegar a su destino final, Saturno, donde separaron sus destinos.

Desde 2004, Cassini gira en la órbita del planeta anillado, que se convertirá en su tumba el 15 de septiembre de este año. Por su parte, Huygens tuvo una vida más breve, pero imposible que fuera más intensa. El 14 de enero de 2005 esta especie de gran tartera metálica se posó con éxito en la superficie gélida de Titán, uno de los mundos candidatos para albergar vida extraterrestre en el Sistema Solar.

Aunque Huygens no iba equipada para detectar firmas biológicas, durante su descenso y hasta 90 minutos después de tomar tierra transmitió cientos de imágenes de la superficie de Titán, mostrándonos sus paisajes fantásticos y el desolado paraje de rocas de hielo en el que se posó. Hasta hoy, Huygens perdura como el explorador más lejano en tierra firme jamás enviado por el ser humano. Las imágenes que envió desde el suelo tienen una extraña doble cualidad de enigmáticas y a la vez familiares, como si hubieran sido tomadas en aquel plató que en la película Capricornio Uno simulaba una falsa misión a Marte.

El vídeo de la NASA es de los que pegan los ojos a la pantalla. Comienza con una animación de la separación de Huygens de su compañera Cassini, pero luego cambia a imagen real para mostrarnos cómo la sonda desciende hacia el fantasmagórico manto de neblina que envuelve la luna, y que comienza a aclararse a 70 kilómetros sobre la superficie. Empieza a revelarse un paisaje compuesto por ásperas mesetas y colinas de hielo que se elevan sobre lo que recuerda al lecho de un lago seco, con aparentes huellas de erosión en forma de cauces y cárcavas tal vez tallados por ríos y torrentes de metano.

Huygens estaba preparada para flotar si era necesario; debido a la densa niebla que envuelve Titán, no se conocían los detalles de su superficie, y los científicos contemplaban la posibilidad de que estuviera cubierta por un océano global de hidrocarburos. Sin embargo, Cassini descubrió que los lagos y mares estaban confinados a las regiones polares.

A medida que Huygens desciende frenada por su paracaídas, el paisaje se va acercando y definiendo, hasta que por fin la sonda se posa en la llanura sembrada de rocas de agua congelada. En ese momento llega el gran final, cuando ante la cámara desfila la sombra del paracaídas mientras cae mansamente hacia el suelo. Por último, una animación recrea esos últimos segundos del titánico viaje de Huygens, que dejó un pequeño souvenir del ser humano a más de 1.200 millones de kilómetros de su hogar.

El vídeo de la ESA es más preciso, tal vez menos dramático, pero añade un par de detalles muy interesantes, sobre todo la perfecta visión del Sol en el cielo a través del sudario de bruma que reviste la luna.

Esta canica azul y su bolita gris, vistas desde Marte

Tras la visita de la sonda New Horizons al explaneta Plutón en julio de 2015, la Tierra alberga ya un inmenso álbum fotográfico de todos los principales objetos del Sistema Solar. Este año tendremos nuevos retratos inéditos de Júpiter, gracias a la sonda Juno, y de Saturno, por mediación de la Cassini, que morirá en el planeta anillado el próximo 15 de septiembre.

Pero al contrario que el terrícola medio, la Tierra aún tiene carencias en su repertorio de selfies. Entiéndase: fotos del planeta se disparan todos los días a mansalva desde satélites de diversos tipos. Pero la gran mayoría de ellas se toman desde la órbita baja y solo nos muestran porciones concretas de la superficie terrestre, como quien se hace un selfie de la nariz o los dientes.

En cambio, no tenemos tantas oportunidades de mirarnos desde lejos, y por eso cada nueva foto que nos muestra nuestro hogar en su conjunto suele convertirse en una imagen icónica. Ocurrió con la “canica azul”, como se llamó a un hermoso claro de Tierra fotografiado en 1972 por la tripulación del Apolo 17 de camino hacia la Luna, y que luego ha tenido imágenes sucesoras obtenidas por sondas no tripuladas. Aún más estremecedora fue la fotografía tomada a petición de Carl Sagan por la Voyager 1 a 6.000 millones de kilómetros de distancia, bautizada como “el pálido punto azul”.

Hoy tenemos una nueva foto para el álbum. Como parte de las operaciones de calibración de su cámara, la sonda de la NASA Mars Reconnaissance Orbiter (MRO) ha enviado esta vista de la Tierra y la Luna fotografiadas desde la órbita marciana. Aunque la imagen aparezca borrosa y pixelada, lo que revela realmente es la asombrosa capacidad de la cámara: desde Marte, la Tierra se ve solo como un puntito luminoso. La ampliación de la fotografía es enorme, y aun así pueden distinguirse perfectamente los detalles: Australia en el centro, sobre ella el sureste de Asia y la Antártida en la parte inferior. Las otras manchas blancas son masas de nubes.

Imagen tomada el 20 de noviembre de 2016 por la sonda MRO. NASA/JPL-Caltech/University of Arizona.

Imagen tomada el 20 de noviembre de 2016 por la sonda MRO. NASA/JPL-Caltech/University of Arizona.

La imagen es en realidad una superposición de dos capturas a distintas exposiciones, ya que la Tierra es mucho más brillante que la Luna. Llama la atención la aparente cercanía entre ambas, pero esto es solo un efecto de la perspectiva: en el momento de la foto, la Luna se disponía a pasar por detrás de la Tierra en su órbita. En realidad la distancia entre las dos es de unas 30 veces el diámetro terrestre.

Este último dato nos recuerda lo difícil que es apreciar las escalas cuando escapamos de la Tierra, algo que ya les traje aquí con algunos de esos magníficos vídeos que se publican por ahí y que nos ayudan a sentirnos todo lo pequeños que realmente somos (aquí y aquí). Así que aprovecho la ocasión para traerles otro más: este vídeo, producido por la agencia espacial rusa Roscosmos, nos enseña cómo sería el aspecto de nuestro cielo si el Sol se reemplazara por alguna otra estrella de las que conocemos, como el sistema Alfa Centauri, Arturo, Vega, Sirio o, en el gran final, Polaris, la estrella polar. ¿Piensan que el Sol es grande? Miren y pásmense.

Gemínidas y cuadrántidas: más estrellas que en Belén, pero la luz las oculta

Para muchos, la lluvia de estrellas fugaces es algo tan ligado al verano como la playa, las sandalias y la sangría. Pero en realidad las perseidas, o lágrimas de San Lorenzo, no son la única ni la mayor lluvia de meteoros que podemos contemplar. Simplemente, en pleno agosto es más factible y agradable tumbarse al fresco de la noche junto a unas cervezas y a la persona que a uno le apetezca tener al lado. Sin embargo, en la época cercana a la Navidad tenemos otros dos fenómenos incluso más intensos. Si es que podemos llegar a verlos.

Del 7 al 17 de diciembre nos visita la lluvia de meteoros de las gemínidas, con su pico hoy día 14. Y con el cambio de año y hasta la noche de Reyes llegarán las cuadrántidas, con su máximo el día 3. Según me cuenta el físico italiano Fabio Falchi, “estas lluvias, debidas a partículas de polvo procedentes de dos pequeños asteroides –probablemente los núcleos de dos antiguos cometas–, están entre las más ricas, llegando a 120 meteoros por hora en su pico, con una media de dos estrellas fugaces por minuto”.

Lluvia de meteoros de las gemínidas. Imagen de Asim Patel / Wikipedia.

Lluvia de meteoros de las gemínidas. Imagen de Asim Patel / Wikipedia.

Pero el motivo por el que hoy traigo aquí a Falchi no es para que nos explique cómo se produce el fenómeno, sino por qué difícilmente vamos a lograr ver algo. Y no solo porque las nubes amenacen con ocultarnos la vista (que también), sino por una razón que queda aclarada en el nombre de la entidad a la que Falchi dedica el tiempo libre que le deja su trabajo como profesor, el Instituto de Ciencia y Tecnología de la Contaminación Lumínica de Italia (ISTIL).

Hoy las ciudades, al menos las de nuestro entorno, han conseguido dejar atrás una buena parte de aquel lastre que las convertía en insalubres y amontonadas jaulas de cemento. Las urbes actuales intentan abrir espacios a la naturaleza y atenuar su pulso frenético con más calles peatonales y zonas de esparcimiento. Pero como decía Willy Loman, el viajante de Arthur Miller, hay que partirse el cuello para ver una estrella. Desde el valle donde vivo no se ve Madrid, pero por las noches es fácil saber dónde está: no hay más que buscar la mancha luminosa que rebosa sobre la línea de la colina.

Falchi lleva años dedicado al estudio de la contaminación lumínica, un problema cada vez más acuciante que no solo dificulta el trabajo astronómico, sino que nos impide disfrutar de uno de los espectáculos naturales más hermosos. Fruto de su esfuerzo, en colaboración con otros investigadores, es el mayor y más completo atlas mundial del brillo del cielo nocturno, publicado el pasado junio en la revista Science Advances y que revelaba algunos datos descorazonadores, como que un tercio de la humanidad –un 60% de los europeos– ya no puede ver la senda de la Vía Láctea en el cielo, el Camino de Santiago.

Y lo que es peor, como conté hace unos meses en un reportaje, es que el problema va a peor: los expertos como Falchi advierten de que el cambio de las luminarias clásicas por luces LED blancas por motivos de consumo energético aumenta aún más la polución lumínica. Los astrónomos aconsejan en su lugar el empleo de luces LED de color ámbar.

Según Falchi, hay varias razones que nos impiden disfrutar de las lluvias de meteoros en todo su esplendor. Por ejemplo, este año las gemínidas nos coinciden con una luna llena, algo que no ocurrirá en las cuadrántidas. Pero sobre todo, dice, “el mayor enemigo de las estrellas fugaces es la contaminación lumínica, presente todas las noches, todo el año”. “En las áreas contaminadas por la luz puedes perdértelas todas, o tener que esperar una hora para ver una sola” en lugar de docenas o cientos que podríamos ver bajo un cielo prístino. Y esto afecta a la mayoría de los habitantes de Europa.

Para quien tenga la posibilidad de desplazarse, Falchi y sus colaboradores del ISTIL, junto con la Administración Atmosférica y Oceánica y el Servicio de Parques Nacionales de EEUU, el centro alemán de geociencias GFZ y la Universidad israelí de Haifa, han preparado un mapa mundial interactivo en el podemos localizar las regiones cercanas de cielos más prístinos. “Busca las regiones de color negro, gris o azul, y ahí tendrás un cielo oscuro”, dice.

Y ya les adelanto la conclusión: España es uno de los países con mayor contaminación lumínica del mundo, pero donde el desigual reparto de la población permite que aún se abran algunos cielos relativamente limpios en ciertas áreas de Guadalajara-Cuenca-Teruel y Toledo-Ciudad Real-Extremadura. Y por supuesto, en zonas de Canarias: La Palma goza del cielo más oscuro de Europa occidental en el Roque de los Muchachos.

Contaminación lumínica en España. Las regiones más oscuras corresponden a cielos más limpios. Imagen del Atlas de Contaminación Lumínica de Falchi et al, tomada de http://cires.colorado.edu/artificial-sky.

Contaminación lumínica en España. Las regiones más oscuras corresponden a cielos más limpios. Imagen del Atlas de Contaminación Lumínica de Falchi et al, tomada de http://cires.colorado.edu/artificial-sky.

Falchi ha publicado también para el gran público una versión de divulgación del atlas (en inglés), The World Atlas of Light Pollution, disponible en Amazon; un buen regalo navideño para los aficionados a la astronomía. Dado que tanto él como sus colaboradores italianos han elaborado el atlas de forma desinteresada y sin financiación alguna, Falchi confía en que los fondos recaudados con la venta del libro le permitan proseguir con sus investigaciones tan necesarias sobre la contaminación lumínica.

“Seguir sin agencia espacial es perder cuatro años más”

Vía libre a ExoMars 2020, la segunda fase del gran proyecto europeo de exploración marciana. Esta fue la decisión tomada la semana pasada por el Consejo Ministerial de la Agencia Europea del Espacio (ESA), entidad participada por 22 países (y NO dependiente de la UE), entre ellos este en el que estoy ahora sentado.

Ignacio Arruego, ingeniero del INTA, junto a un modelo de Schiaparelli. Imagen de I. A.

Ignacio Arruego, ingeniero del INTA, junto a un modelo de Schiaparelli. Imagen de I. A.

Les pongo en antecedentes: en marzo de este año se lanzó la primera fase de ExoMars, un proyecto nacido de la colaboración entre la ESA y Roscosmos, la agencia espacial rusa. Este primer volumen constaba a su vez de dos fascículos: primero, la Trace Gas Orbiter (Orbitador de Gases Traza o TGO), un satélite destinado a estudiar los gases raros de la atmósfera marciana con especial atención al metano, posible signo de vida.

Segundo, Schiaparelli, un platillo volante de un par de metros que debía posarse en el polvo de Marte para catar el ambiente, pero que sobre todo debía servir de ensayo general para la segunda fase. Previsto para 2020, el segundo volumen de ExoMars pretende poner un vehículo rodante o rover en el suelo marciano.

Además de su carácter científico y tecnológico, la misión ExoMars tiene bastante de revancha histórica; porque hasta ahora el nuevo mundo marciano tiene un dueño exclusivo, Estados Unidos. Como ya he repasado aquí y en otros medios, las misiones de aterrizaje en Marte han tenido una tasa de éxito inusualmente baja en comparación con los proyectos a otros destinos, como la Luna o Venus, pero este premio de lotería no ha estado muy repartido: mientras la NASA ha dado en el clavo en la gran mayoría de sus intentos, Rusia y Europa han fracasado. La primera solo logró 14,5 segundos de transmisión con su sonda Mars 3 hace 45 años. Por su parte, Europa perdió en 2003 su Beagle 2, y el pasado octubre Schiaparelli se estampó contra su objetivo.

Uno de los afectados directamente por este reciente desastre es Ignacio Arruego, ingeniero del Instituto Nacional de Técnica Aeroespacial (INTA) responsable del equipo que desarrolló el Sensor de Irradiancia Solar (SIS). Este aparato, que debía medir la transparencia de la atmósfera de Marte (la luz del sol que llega a su superficie), formaba parte del instrumento principal de Schiaparelli, el DREAMS (Dust Characterisation, Risk Assessment, and Environment Analyser on the Martian Surface). El equipo del INTA participa también de forma destacada en la instrumentación del rover de ExoMars 2020.

Portada de 'El medallón de Santiago', novela de Ignacio Arruego.

Portada de ‘El medallón de Santiago’, novela de Ignacio Arruego.

Y por cierto, aprovecho la ocasión para contarles que, entre proyecto y proyecto, Arruego también encuentra algún rato para escribir. Su novela de debut, El medallón de Santiago, es una intriga con trasfondo histórico muy viajero que cuenta la investigación de sus dos protagonistas en busca de un antiguo y misterioso medallón que perteneció al apóstol Santiago.

Arruego me dice que está satisfecho con la decisión del Consejo Ministerial de la ESA de mantener la financiación de ExoMars. Pero no tanto con las palabras del ministro Luis de Guindos, que presidió la reunión debutando en este campo, tras asumir en el nuevo gobierno las competencias del sector espacial que antes recaían en Industria. Una carencia clásica de España es la falta de una agencia espacial, algo que tienen las principales potencias con actividades en este terreno. Según Arruego, las declaraciones de Guindos tras la reunión afirmando que España no necesita una agencia espacial han sentado muy mal en el sector. Esto es lo que me ha contado:

¿Por qué Guindos no quiere una agencia española del espacio?

Es gracioso, porque en cambio sí reconocía que hace falta coordinación entre todos los actores espaciales en España. Pues eso es precisamente, entre otras muchas cosas, lo que haría una agencia. Yo creo que siguen pensando que supondría un coste, y no se dan cuenta de que realmente existen ya todos los actores necesarios en España para hacer una agencia de verdad, ¡y por tanto una buena coordinación podría incluso disminuir gasto! Debería ser no un mero órgano gestor, sino una agencia con capacidad técnica y tecnológica, que defina y desarrolle programas propios tirando de la industria nacional, y estrategias internacionales y especialmente en la ESA; que aúne ingeniería de sistemas, I+D tecnológico y científico, la gestión económica, las relaciones con la ESA… En fin, una Agencia con mayúsculas.

Una pena. Lo considero otra oportunidad perdida por la falta de visión de nuestros políticos, sin duda mal asesorados. Otros cuatro años perdidos para que España termine de situarse en el mapa espacial internacional.

¿Hay nuevos datos sobre qué le ocurrió a Schiaparelli?

Como ya sabrás, se produjeron fundamentalmente dos eventos que provocaron la colisión: la suelta prematura del paracaídas y el corto encendido de los retrocohetes. Se ha especulado mucho sobre un fallo del altímetro radar, pero no parece estar allí el problema. Analizada la telemetría de la Unidad de Medida Inercial (IMU) que mide las aceleraciones de la nave durante el descenso, se observa que hay un breve lapso de tiempo (inferior a un segundo) en el que una de las medidas está saturada. Dado que el ordenador va calculando la orientación de la nave en base a las medidas acumuladas de esta IMU, durante el tiempo que ésta se satura no dispone de una información fidedigna. Ese dato de la IMU te permite saber cómo está orientada la nave respecto al suelo, y el radar te da la distancia al mismo según avanza la nave. Al estar equivocado el dato de la orientación, la nave llegó a obtener un valor que indicaba que la distancia real (en vertical) al suelo era negativa. Es decir, que había aterrizado. Y por eso cortó los retrocohetes.

Otra cosa que hizo, y esto es curioso, fue encender DREAMS, la estación meteorológica que transportaba y en la que participaba el INTA. DREAMS no debía encenderse hasta después del aterrizaje, pero como el ordenador pensó que había aterrizado aún estando a unos tres kilómetros de altura, nos encendió. Hay unos 40 segundos de telemetría relativa al estado de DREAMS, que era cien por cien nominal. Podemos decir que hemos llegado a Marte, pero poco rato.

¿Se ha averiguado algo sobre cuál fue la causa de ese error de percepción de Schiaparelli?

Aún se desconoce, y dudo que llegue a conocerse con un 100% de seguridad. La nave sufría unas aceleraciones digamos que laterales mayores de lo esperado pero, ¿por qué? ¿Rachas de viento fuerte? ¿Un mal despliegue del paracaídas? Eso no sé si llegaremos a saberlo con seguridad.

ExoMars 2020 sigue adelante, pero ¿en qué afectará el fracaso de Schiaparelli desde el punto de vista técnico?

La ESA trata de ser positiva en su análisis del resultado de ExoMars 2016. La realidad es que TGO está funcionando de momento según lo esperado, lo cual es un gran éxito. Y Schiaparelli, por mucho que suene a excusa, es cierto que era un módulo de demostración con el objetivo de permitirnos aprender a aterrizar en Marte. De alguna manera ha cumplido su misión en ese sentido, pues como ves se ha aprendido mucho de la telemetría enviada durante el descenso. Se reforzarán los ensayos a los elementos críticos y se revisarán algunas secuencias de tomas de decisiones. Se ha aprendido, sin duda.

¿Y este aprendizaje ofrecerá más garantías de éxito a la próxima fase?

Sí, en 2020 deberíamos ser capaces de aterrizar con más garantías. No es trivial, aún así. No sólo porque nunca lo es (el conocimiento de la atmósfera de Marte sigue siendo muy incierto), sino porque la nueva misión es bastante más pesada (algo así como el triple si no recuerdo mal), requiere el uso de dos paracaídas (uno hipersónico y otro subsónico), etcétera. Hay diferencias. Pero hay que ser optimista y sobre todo trabajar duro en los elementos críticos y en sus ensayos. Creo que irá bien.

¿Cuál es tu predicción sobre el futuro de las misiones tripuladas?

Como sabes, hay dos grandes corrientes de pensamiento en torno a cómo ir a Marte. Una pasa por ir llevando todo lo que nos hace falta para volver. Empezando por el combustible para el despegue de vuelta. Se barajan naves muy grandes, a menudo con ensamblajes en órbita porque la capacidad de despegue de la Tierra no daría para lanzarlas de una vez.

La otra aproximación pasa por emplear naves más pequeñas, tripulaciones muy reducidas, y hacer uso intensivo de ciertos recursos existentes en Marte. Por ejemplo, es posible generar el combustible allí para un despegue desde Marte, llevando sólo una pequeñísima parte de sus componentes (hidrógeno, en concreto), y obteniendo carbono y oxígeno de la atmósfera de Marte, rica en CO2.

Yo creo que hasta la fecha siempre se ha hablado más de la primera aproximación. Yo a día de hoy soy más partidario de la segunda. Creo que es la más realista para un primer viaje tripulado, y que terminará imponiéndose. Probablemente la tecnología permita tenerla lista en unos 15 años desde que se decida ponerse con ello. Pero nadie se ha puesto seriamente aún. Existe la Iniciativa Mars Direct desde hace la tira, pero nunca ha sido el enfoque adoptado por las grandes agencias, ni parece que lo sea ahora por gente como Elon Musk. Creo que si hay un cambio de enfoque veremos humanos en Marte bastante antes de la mitad del siglo. Si no lo hay, ya veremos.

Cassini cose su órbita a los anillos de Saturno

El 15 de septiembre de 2017, la sonda de la NASA Cassini se zambullirá a muerte en la espesura gaseosa de Saturno. En sus diez veinte años de vida este aparato ha completado un periplo por el Sistema Solar que está ofreciendo a los científicos un asiento de primera fila en el planeta de los anillos. Su sonda acompañante Huygens, de la Agencia Europea del Espacio (ESA), se posó en 2005 en la luna Titán para enviar la foto más lejana jamás capturada por el ser humano desde la superficie de un mundo extraterrestre.

Pero antes de acabar espachurrado por la presión de Saturno, a Cassini aún le queda tarea. Los responsables de la misión están ejecutando una coreografía que les acercará como nunca antes a los anillos del planeta. A lo largo de este año han modificado la órbita de Cassini inclinándola respecto al ecuador y los anillos, para lograr que la sonda cruce este plano casi en vertical.

Desde el pasado 30 de noviembre y hasta el 22 de abril de 2017, Cassini recorrerá 20 órbitas casi lamiendo el borde externo del anillo F, el más exterior del sistema principal. Durante esta serie de vueltas, sus instrumentos probarán el polvo y el gas de la periferia del anillo, además de estudiar algunas de las lunas más desconocidas del planeta, como Pandora, Pan, Dafne y Atlas.

Los anillos de Saturno, nombrados alfabéticamente según su orden de descubrimiento. Imagen de NASA/JPL-Caltech/Space Science Institute.

Los anillos de Saturno, nombrados alfabéticamente según su orden de descubrimiento. Imagen de NASA/JPL-Caltech/Space Science Institute.

En los próximos meses, Cassini también podrá estudiar los anillos a contraluz del sol para estudiar irregularidades tales como impactos de asteroides, así como unas curiosas manchas con forma de hélice en el anillo A que revelan la probable presencia de diminutas nuevas lunas.

Una vez concluidas todas estas tareas pendientes, los ingenieros de Cassini tienen preparado un espectacular ale-hop para los últimos meses. El 22 de abril, finalizada la última de las órbitas rozando el anillo F, el paso de la sonda cerca de Titán modificará su trayectoria lo justo para que salte los anillos y se enhebre en el ojo de 2.400 kilómetros que separa a estos del planeta.

Como una aguja cosiendo los ojales de un botón, Cassini dará un total de 22 vueltas a través de esa estrecha brecha antes de precipitarse hacia Saturno y acabar aplastada por la presión de sus gases. Durante esa zambullida, aún tendrá tiempo de enviar datos sobre la composición de la atmósfera.

En gris, las órbitas de Cassini rozando el anillo F. En azul, las 22 órbitas previstas entre Saturno y sus anillos. La órbita final figura en color naranja. Imagen de NASA/JPL-Caltech.

En gris, las órbitas de Cassini rozando el anillo F. En azul, las 22 órbitas previstas entre Saturno y sus anillos. La órbita final figura en color naranja. Imagen de NASA/JPL-Caltech.

La NASA ya ha publicado las primeras imágenes enviadas por Cassini durante la primera de esas órbitas, por encima del polo norte de Saturno. En ellas se aprecia el famoso hexágono polar, un insólito dibujo formado por las nubes. Para hacerse una idea de las dimensiones, cada uno de los lados del hexágono es mayor que el diámetro de la Tierra.

El hexágono del polo norte de Saturno, fotografiado por la sonda Cassini. Cada una de las tomas corresponde a una longitud de onda diferente. Imagen de NASA/JPL-Caltech/Space Science Institute.

El hexágono del polo norte de Saturno, fotografiado por la sonda Cassini. Cada una de las tomas corresponde a una longitud de onda diferente. Imagen de NASA/JPL-Caltech/Space Science Institute.

EmDrive: publicado, pero aún sin explicación válida

Justo al día siguiente de mi anterior artículo sobre el EmDrive, lo que circulaba como un rumor fundado se hizo realidad: el estudio del equipo de NASA Eagleworks se ha publicado en la edición digital de la revista Journal of Propulsion and Power (JPP). Su versión en papel aparecerá en el número de diciembre.

Es necesario recordar que no es el primer estudio publicado que valida el funcionamiento del EmDrive; el equipo de Eagleworks ya había presentado resultados en un congreso hace dos años, pero estas comunicaciones no están sujetas al filtro de revisión por pares de las revistas. En cambio, sí lo estuvieron los estudios publicados respectivamente por el equipo chino dirigido por Yang Juan y por los alemanes Tajmar y Fiedler.

Uno de los sistemas EmDrive construidos por el equipo de Eagleworks. Imagen de White et al, JPP.

Uno de los sistemas EmDrive construidos por el equipo de Eagleworks. Imagen de White et al, JPP.

También conviene recalcar lo que ya he explicado antes: que los científicos de Eagleworks, dirigidos por Harold Sonny White, validen el funcionamiento del EmDrive, no implica que la NASA como institución respalde estos resultados, ni mucho menos la explicación que los autores aportan. Eagleworks es un poco a la NASA lo que el Equipo A al Pentágono. La agencia se ha mantenido siempre bien al margen de las proclamas de White, llegando incluso a prohibirle el contacto con los medios (nota periodística: por este motivo mi anterior artículo se titulaba “Científicos de la NASA…” y no “La NASA…”).

Además, insisto en que la publicación de los resultados con estas bendiciones oficiales significa lo que significa, y no más: que el estudio es formalmente correcto respecto a los resultados que se detallan, con las limitaciones que se especifican y las conclusiones directas que pueden derivarse de ellos.

Durante estos días se rumoreaba que el Instituto Estadounidense de Aeronáutica y Astronáutica, que edita la revista JPP, habría aceptado publicar el estudio solo a condición de que White y sus colaboradores aceptaran retirar su explicación del efecto EmDrive basada en una interpretación alternativa y minoritaria de la física cuántica que ni siquiera para sus propios defensores necesariamente justifica el funcionamiento del EmDrive.

Pero esto no tenía ningún sentido; todo científico sabe para qué sirve el apartado de discusión en un estudio. Sería absurdo aprobar los resultados de un trabajo, censurando al mismo tiempo las especulaciones que sus autores puedan verter en el espacio específicamente abierto para ello. Finalmente el estudio se ha publicado esencialmente completo respecto a la versión sin revisar filtrada antes en internet.

En resumen: ¿significa esto que el EmDrive funciona? Una pregunta aún sin respuesta definitiva, pero que sí puede descomponerse en otras más precisas:

¿El EmDrive produce una fuerza? Sí, al menos una fuerza aparente. Tres grupos de investigación distintos han publicado resultados mostrando que es así. Y eso sin contar los experimentos de los propios inventores del sistema, Roger Shawyer y Guido Fetta, que se han hecho públicos pero no se han publicado formalmente (nótese el matiz). Poner en duda los resultados de un equipo de investigadores cuestiona su honestidad o su competencia profesional; poner en duda los resultados de tres equipos independientes cuestiona la honestidad o la competencia profesional de quien los pone en duda.

¿Esa fuerza podría emplearse como propulsión? Tal vez, pero aún no puede confirmarse al cien por cien. En su estudio, White y sus colaboradores mencionan como principales objeciones un posible desplazamiento del centro de gravedad del cono o una expansión térmica, que es mayor en el vacío (donde se han hecho los experimentos del nuevo estudio) que en el aire, mientras que la señal del impulso es igual en ambos medios. Pero aunque han hecho todo lo posible por descartar estos efectos parásitos, el sistema tiene una limitación intrínseca por el mero hecho de estar atornillado al suelo por dos lugares. Los investigadores esperan diseñar un nuevo sistema con mayores grados de libertad para poder desechar definitivamente estas posibles interferencias. Sin embargo, si la señal fuera enteramente un falso positivo debido a alguno de estos efectos, sería chocante que los experimentos independientes con diferentes diseños no hubieran llegado ya a esta conclusión.

¿Expulsa propelente el EmDrive? No, al menos un propelente formado por materia. Sé que suena a perogrullada; pero como menciono más abajo, una hipótesis pretende explicar el funcionamiento del EmDrive mediante la expulsión de fotones a través del extremo cerrado del cono. Pero los fotones no tienen masa, por lo que no son materia. Al menos, no tienen masa en reposo, claro que un fotón nunca está en reposo…

¿Consume combustible el EmDrive? No. La fuente nuclear que alimentaría el generador de microondas es un consumible, pero no un combustible. Incluso es posible que en ciertos casos el magnetrón pudiera alimentarse solo con energía solar. A comienzos de este año, la sonda Juno de la NASA batió el récord del aparato más alejado del Sol alimentado por paneles solares, rompiendo la marca anterior de 792 millones de kilómetros establecida por la europea Rosetta. Deberán ser los ingenieros quienes valoren en qué casos la energía fotovoltaica sería suficiente para alimentar un generador de microondas; que yo sepa, White solo ha hablado de emplear energía nuclear.

¿Viola el EmDrive las leyes de la física? No. Nada puede violar las leyes fundamentales de la naturaleza. Pero si funciona, significa que la teoría está incompleta, y habrá que encontrar una nueva manera de explicar la realidad. Como conté recientemente a propósito de la materia oscura, no es la primera vez que esto ocurre en la historia de la ciencia, ni será la última.

Entonces, ¿cómo se explica la aparente violación de la conservación de la cantidad de movimiento (p)? Repaso brevemente, a riesgo de dejar alguna fuera, las cinco principales hipótesis que se han aportado para explicar el funcionamiento del EmDrive:

1. Presión de radiación

Shawyer, el inventor del sistema, afirma que el EmDrive genera propulsión por el empuje de los fotones de la radiación de microondas sobre el extremo cerrado del cono, por el mismo principio en el que se basan los veleros espaciales; no las velas solares, que se impulsan por el viento solar (partículas cargadas), sino las fotónicas. Pero la inmensa mayoría de los físicos rechazan esta explicación, porque es como empujar un coche desde dentro. O como me recordaba con mucho acierto un/a usuario/a en Twitter, como el barón de Münchhausen, que escapó de una ciénaga tirando de su propia coleta. En este caso habría una clara violación de la conservación de p. Shawyer sostiene que no es así; de hecho, hace tiempo me aseguró en un email que “el EmDrive claramente obedece las leyes de Newton, tanto teórica como experimentalmente, según muestran los resultados de las pruebas dinámicas; así que no viola la conservación de la cantidad de movimiento”. Pero hasta donde sé, no ha explicado cómo.

2. Fotones como propelente

El pasado junio, un equipo de investigadores finlandeses publicó un estudio (revisado por pares) que atribuye la propulsión del EmDrive a la expulsión de fotones que actúan como propelente. Según la peculiar visión de Patrick Grahn y sus colaboradores, sí existe un combustible, las microondas, y un propelente, los fotones. Grahn afirma que el emparejamiento de las partículas en fases opuestas produce una interferencia destructiva que cancela su radiación electromagnética, pero los fotones no se destruyen, sino que escapan del extremo cerrado del cono siendo indetectables como ondas y actuando como propelente. Los fotones tienen una cantidad de movimiento debida solo a su energía, pero la hipótesis de Grahn requiere asumir que de esta p se deriva una masa teórica en movimiento, que vendría aportada por el generador de microondas y que escaparía del cono hacia el exterior, moviendo el propulsor por una simple acción-reacción. Todo lo cual resulta inaceptable para la gran mayoría de los físicos.

3. Radiación Unruh

Esta es una primera hipótesis que se basa en la energía del vacío, en el marco de la física relativista. Ya la expliqué con detalle anteriormente. Como en el caso anterior, la teoría requiere adjudicar una masa relativística a los fotones. Pero aunque el efecto en el que se fundamenta no se ha descartado, y de hecho podría contemplarse como una forma particular de la radiación de Hawking que desprenden los agujeros negros, tampoco se ha corroborado de forma convincente. Hasta ahora, la idea propuesta por el físico Mike McCulloch no ha calado en la comunidad científica. Mi impresión puramente personal (como un no-físico y al margen de la discusión sobre el efecto Unruh) es que justificar el funcionamiento del EmDrive por el efecto Unruh es un poco como matar moscas a cañonazos, cuando además ni siquiera está claro que los cañonazos existan.

4. Empuje desde el vacío cuántico

White explica el funcionamiento de su sistema también por energía del vacío, pero en el contexto cuántico. La hipótesis se basa en el vacío cuántico, el estado más bajo de energía de un sistema cuántico (digamos, una visión energética de lo que se entendería como vacío normal). Esta energía no es cero, lo que puede explicarse por la acción de las oscilaciones de partículas virtuales. Este mecanismo se ha utilizado para explicar el efecto Casimir de la teoría cuántica de campos, según el cual existe una fuerza medible –de atracción o repulsión según la configuración del sistema– entre dos placas conductoras separadas por una pequeña distancia en el vacío. El problema con la explicación de White es que nadie se la cree: para la mayoría de los físicos, es imposible extraer energía aprovechable como propulsión a partir del vacío cuántico; no se puede extraer p de él, ya que no es un marco de referencia fijo desde el que empujar, así que estamos otra vez en el caso del barón de Münchhausen y su coleta.

Sin embargo, White justifica su hipótesis basándola en una teoría alternativa de la física cuántica. Todo lo que han oído mencionar sobre el extraño comportamiento de las partículas, como la paradoja del gato de Schrödinger o el experimento de la doble ranura, se basa en la llamada interpretación de Copenhague, la que prima hoy en física. Según esta teoría, las partículas no tienen una posición fija, sino que se comportan como nubes de probabilidad (por ejemplo, a lo largo de dos caminos alternativos y mutuamente excluyentes) hasta que un observador las mide, rompiendo la onda y bloqueando las partículas en una posición. Esta interpretación probabilística de la cuántica no gustaba nada a Einstein; como mencioné hace unos días, en una ocasión le preguntó a su biógrafo Abraham Pais si creía que la luna solo existía cuando alguien la miraba.

En los años 20 del siglo pasado, Louis de Broglie propuso una interpretación alternativa, la teoría de la onda piloto, que David Bohm completó en lo que hoy se conoce como mecánica de De Broglie-Bohm. La teoría es realista; es decir, afirma que las partículas sí tienen una posición concreta en todo momento, con independencia de la presencia de un observador y guiada por su onda acompañante (onda piloto). Si no conocemos estas trayectorias, decía Bohm, no se debe a que no existan, sino a la existencia de variables ocultas que se nos escapan.

La teoría implica que la mecánica cuántica no es local; las partículas pueden estar físicamente alejadas entre sí, lo mismo que los objetos grandes sujetos al comportamiento de la física clásica. En los años 60, John Bell se acogió a la teoría de la onda piloto para explicar el entrelazamiento cuántico, la capacidad de dos partículas separadas de estar sincronizadas en sus propiedades. Aunque la teoría de De Broglie-Bohm continúa sin ser aceptada mayoritariamente, en los últimos años se han publicado varios experimentos que la respaldan. Y por ejemplo, el entrelazamiento cuántico en condiciones no locales ya ha sido suficientemente validado, como he contado aquí en ocasiones anteriores.

En concreto, White se apoya en la posibilidad de que las partículas reales del vacío cuántico puedan intercambiar cantidad de movimiento para defender que esta puede cosecharse y transmitirse: “sería posible aplicar/extraer trabajo en/de el vacío, y por tanto sería posible empujar desde el vacío cuántico preservando las leyes de la conservación de la energía y de la cantidad de movimiento”, escribe. Pero si la hipótesis de White fuera aceptada, que por el momento no lo es, esto supondría cambiar radicalmente de modelo de física cuántica; algo que hasta ahora no han conseguido validaciones más sólidas de la teoría de la onda piloto.

5. Efecto Mach

Una teoría desarrollada por el físico James Woodward en los años 90 propone que la energía interna de un cuerpo varía al acelerar; es decir, que no todo se traduce en energía cinética, sino que el objeto en movimiento almacena energía potencial absorbida de su entorno mediante la interacción con el campo gravitatorio que se opone a su movimiento (la inercia). Este enriquecimiento energético, sugiere Woodward, se traslada a cambios en la masa del cuerpo, y puede ordeñarse en forma de cantidad de movimiento que el objeto le ha robado previamente al universo, conservándose todo lo que tiene que conservarse.

La hipótesis es esencialmente compatible con la relatividad general; de hecho, la idea (más filosófica que física) del origen de la inercia como una influencia del resto del universo sobre un sistema local fue una inspiración para Einstein, que profesaba un gran respeto hacia su autor, el austríaco Ernst Mach. Sin embargo, el efecto Mach derivado por Woodward aún no ha sido validado de forma concluyente. Woodward afirma que su teoría podría aprovecharse para construir propulsores sin partes móviles ni propelente, y que es la explicación que mejor encaja con la física actual para explicar la señal del EmDrive.

Plutón tiene un océano granizado bajo el suelo

Antiguamente se hablaba de los Siete Mares para decir que alguien había recorrido todo el mundo a lo largo y a lo ancho. Pero naturalmente, todos los océanos de la Tierra son uno solo. Hoy podríamos volver a hablar de los Siete Mares, pero serían estos: Tierra, Ceres, Europa, Calixto, Ganímedes, Titán, Encélado, Rea, Dione, Mimas, Titania, Oberón, Tritón, Plutón, Eris, Sedna… Y posiblemente, más.

Definitivamente, salen más de siete, y es que el agua líquida parece ser mucho más abundante en el Sistema Solar de lo que jamás se había sospechado. En todos esos satélites, asteroides o planetas enanos con gran cantidad de hielo se sospecha también con mayor o menor fundamento que existen océanos líquidos bajo sus costras heladas.

Y llamarlos océanos no es ni mucho menos una exageración: quienes se han dejado convencer por ese tópico de que la Tierra es un planeta acuático, no se pierdan este gráfico publicado por Business Insider que pone las cosas como son: comparativamente, la Tierra es solo una roca mojada, como una naranja con la cáscara húmeda. Europa, satélite de Júpiter, tiene el doble de agua (líquida + hielo) que nuestro planeta. Pero es que Ganímedes, también luna de Júpiter, tiene nada menos que 39 veces más agua que la Tierra, en un mundo cuyo diámetro es más o menos un 50% mayor que el de nuestra Luna.

Representación de un corte de Plutón. La capa de azul claro es la corteza helada, y la de azul oscuro es el océano interior. Imagen de Pam Engebretson / UCSC.

Representación de un corte de Plutón. La capa de azul claro es la corteza helada, y la de azul oscuro es el océano interior. Imagen de Pam Engebretson / UCSC.

Les prometí una noticia fresca, más bien glacial, de nuestro Sistema Solar, y aquí está: nos llega desde Plutón. Aunque los científicos ya sospechaban la existencia de un océano bajo su superficie, la revista Nature publica hoy nuevas pruebas a favor de ello en dos estudios (uno y dos) que analizan los datos tomados el pasado año por la sonda New Horizons y los combinan con modelos matemáticos para llegar a una conclusión: el famoso corazón, la región más distintiva de la fisonomía plutoniana, esconde muy probablemente un océano de agua con algún anticongelante, posiblemente amoníaco, que le daría una textura viscosa, algo parecido a un granizado.

Para llegar a esta conclusión, los investigadores han modelado la dinámica del planeta para explicar la curiosa observación de que el corazón, llamado región de Tombaugh, se sitúa siempre en posición exactamente opuesta a la luna Caronte. Plutón y el mayor de sus satélites están en mutuo acomplamiento de marea, lo que significa que ambos se muestran siempre la misma cara el uno al otro. En el caso de la Tierra, la Luna está en la misma situación respecto a la Tierra (y por eso vemos siempre la misma cara), pero no al contrario.

Los investigadores concluyen que existe una anomalía de masa en la región de Tombaugh que produjo esta situación. El impacto de un objeto espacial produjo una depresión de 1.000 kilómetros de anchura llamada Sputnik Planitia, que causó un abombamiento del océano bajo la superficie. Posteriormente la llanura se llenó de nitrógeno congelado, y la combinación de estos efectos provocó que Plutón se alineara con Caronte de modo que la Sputnik Planitia queda exactamente en línea con el satélite, pero en la cara opuesta a él.

Y surge la pregunta: ¿habrá vida en el océano de Plutón? ¿De Europa? ¿De Ganímedes? Hoy no tenemos otra respuesta salvo que no es descartable. En la Tierra tenemos microorganismos que crecen allí donde el agua alcanza nuestras temperaturas más bajas. En Plutón los límites son diferentes, y por supuesto que las temperaturas del océano plutoniano serían inimaginables para nuestros microbios más amantes del frío. Pero algunos organismos han desarrollado evolutivamente sus propios anticongelantes naturales para mantener el agua de sus células en estado líquido. Y donde hay agua líquida, hay siempre una esperanza de vida.

 

Científicos de la NASA confirman que el “propulsor imposible” EmDrive funciona

Si esto fuera cierto, lo cambiaría todo. Ya, ya. Pensarán que esta frase se manosea demasiado para vender expectativas infladas sobre casi cualquier cosa, desde los cereales con chocolate hasta la última oferta de tarifas para móviles. Pero créanme: les aseguro que, si esto finalmente llega a confirmarse sin ningún género de dudas, la física y la ingeniería aeroespacial van a tener que replantearse algunos de sus fundamentos básicos, que se remontan hasta el día en que Einstein le preguntó a su biógrafo si creía que la luna solo existía cuando la mirábamos.

Desde hace unos años se viene hablando del llamado EmDrive o propulsor de cavidad resonante de radiofrecuencia. Se trata de un tipo de motor (o más bien, no-motor) que permitiría emprender largos viajes por el espacio a velocidades hoy inimaginables, sin emplear ni una sola pieza mecánica móvil que pueda desgastarse o romperse, sin consumir combustible de ninguna clase y sin expulsar ningún tipo de propelente. En resumen, el sueño más salvaje de la ciencia ficción.

El EmDrive. Imagen de SPR.

El EmDrive. Imagen de SPR.

El EmDrive fue ideado por el ingeniero británico Roger Shawyer, que a principios de este siglo creó una empresa destinada a desarrollarlo. Pocos años después, el ingeniero estadounidense Guido Fetta creó independientemente un concepto similar llamado Cannae Drive. En esencia, el EmDrive consiste en algo tan simple como un cono metálico truncado en cuyo interior se hacen rebotar microondas, un tipo de ondas de radio; o sea, luz (no visible). Supuestamente, es lo que les ocurre a estas ondas cuando rebotan en el interior del cono lo que produce la propulsión.

Solo hay un pequeño gran inconveniente; y es que, de acuerdo a la física actual, es imposible que funcione. Un cohete se mueve gracias a la tercera ley del movimiento de Newton, el principio de acción y reacción: quema un combustible, expulsa un propelente en una dirección y esto lo impulsa en sentido contrario. Esta ley fundamental de la física debe respetarse en todos los casos: cuando un velero avanza, lo hace como reacción a la fuerza que impacta sobre sus velas. En los barcos es el viento atmosférico, mientras que las naves espaciales pueden aprovechar el viento solar de partículas cargadas o el empuje de los fotones por la llamada presión lumínica.

Pero está claro que no podemos mover un barco empujando las velas desde la cubierta, igual que no podemos empujar un coche desde dentro sin un punto de apoyo exterior. Esta imposibilidad se describe por la recreación de la ley de Newton en el principio de conservación de la cantidad de movimiento, cuyo fundamento básico puede resumirse de la forma más simple en que, para que algo se mueva, otra cosa tiene que cederle ese movimiento. Y no parece que la luz rebotando dentro de un cono pueda mover a nada más que el aburrimiento. En resumen, la idea del EmDrive es parece una aberración inviable.

Pero si de ninguna manera esto puede funcionar, ¿qué sentido tiene seguir discutiendo? El problema es que el propulsor imposible parece empeñarse una y otra vez en negar la teoría. No solo Shawyer y Fetta insisten en que su motor produce una propulsión, pequeña pero real; los mismos resultados se han obtenido en China y en Alemania. Pero sin duda, lo que más revuelo ha causado es la confirmación de estos resultados en un laboratorio bastante oscuro del Centro Espacial Johnson de la NASA llamado Eagleworks, tan marginal que ni siquiera (que yo sepa) tiene apenas sitio en el dominio web de la agencia, sino solo una página en Facebook.

Todo físico que aspire a seguir siendo considerado como tal negará hasta la tortura que el EmDrive pueda hacer otra cosa que decorar un salón. Y por ello, cuando hace un par de años los científicos de Eagleworks se plantaron en un congreso afirmando que el propulsor funciona, la reacción de la comunidad no fue precisamente el aplauso. Incluso la NASA tuvo que desmarcarse de los resultados de Eagleworks, adhiriéndose a la fe pura y prohibiendo a los responsables del laboratorio todo contacto con los medios.

Pero como he explicado alguna vez aquí, los congresos son foros donde a menudo se presentan resultados en caliente, aún sin suficiente contrastación y sin validación por parte del resto de la comunidad científica. Solo cuando un estudio es formalmente revisado por otros expertos y publicado en una revista científica puede asumirse que sus conclusiones son válidas.

Hace unos días se ha filtrado (probablemente por parte de los propios responsables de Eagleworks) un estudio que pone a limpio los resultados de los investigadores de la NASA con el EmDrive. Y descartadas posibles objeciones, como la intervención de fuerzas parásitas o la interferencia del aire, los científicos de Eagleworks se ratifican en su conclusión: “el sistema funciona de forma consistente”, escriben.

Según el estudio, el EmDrive produce una fuerza de 1,2 milinewtons (mN) por kilovatio (kW). A primera vista podría no parecer una propulsión impresionante. Por ejemplo el llamado propulsor Hall, un motor de plasma que actualmente se investiga como alternativa prometedora a los actuales cohetes, genera 60 mN/kW, unas 50 veces más fuerza que el EmDrive. Pero la diferencia estriba en que este propulsor consume grandes cantidades de combustible. Y en cuanto a las opciones actuales de propulsión sin propelente, como las velas solares, solo alcanzan algo más de 6 micronewtons por kW; es decir, unas 200 veces menos que el EmDrive.

Pero sobre todo, hay que tener en cuenta que el impulso generado por el EmDrive debería ser, pura y simplemente, cero. Cualquier fuerza por encima de cero, por mínima que sea, podría ir sumando aceleración a una nave espacial hasta lograr velocidades increíbles; se ha calculado que la propulsión suministrada por el EmDrive, si realmente existe, podría poner una nave en Marte en 70 días, o llegar al sistema estelar Alfa Centauri en solo 92 años.

¿Y ahora, qué? Por supuesto que la discusión sobre el EmDrive no va a acabar aquí. Fetta ha anunciado que lanzará al espacio un Cannae Drive en un satélite para estudiar su comportamiento en condiciones reales. En cuanto al estudio de Eagleworks, aún debe pasar los filtros de publicación, aunque es de esperar que no sean un obstáculo; al fin y al cabo, anteriormente otros grupos ya han publicado formalmente resultados positivos con el EmDrive.

De hecho, antes de que el estudio se filtrara en internet ya circulaban rumores sugiriendo que el proceso de revisión se ha completado y que por tanto el trabajo se publicará próximamente, tal vez en la revista Journal of Propulsion and Power. Si los rumores son ciertos, ¿cómo reaccionará la NASA ante un estudio publicado en su nombre que sostiene una (aparente) violación flagrante de las (actuales) leyes de la física?

Claro que, si finalmente el EmDrive funciona, habrá que encontrar la manera de explicarlo sin que exista tal violación. Ya conté aquí una interesante hipótesis que sin embargo no ha sido favorecida por otros físicos. Pero los científicos de Eagleworks apuntan a una explicación incluso más audaz, que justifica lo que les decía al comienzo: el EmDrive amenaza con sacudir los cimientos fundamentales en los que se asienta la física cuántica actual. Mañana se lo contaré.

O mejor, pasado mañana; antes de eso les traeré aquí una noticia fresca, o más bien glacial, que nos descubrirá una nueva maravilla de nuestro Sistema Solar. No pierdan esta sintonía.