BLOGS
Ciencias mixtas Ciencias mixtas

Los secretos de las ciencias para
los que también son de letras

Archivo de la categoría ‘Divulgación’

Qué es el otoño, en dos patadas

¿Qué es el otoño, mamá/papá? A la pregunta de los tiernos infantes durante estos días, un buen número de madres y padres optarán por distintas estrategias de respuesta: la poética (“cariño, el otoño es una rabiosa paleta de ocres y dorados salpicada sobre los campos como una lluvia de purpurina”), la evasiva (“pues hijo, es lo que viene después del verano y antes del invierno”) o la de Donald Trump (“que alguien se lleve a este niño”).

Ni siquiera un subrepticio vistazo a la Wikipedia será de gran ayuda: bastará empezar a leer sobre equinoccios, eclípticas y declinaciones para que una mayoría se decante por la opción c. Pero en realidad, puede ser mucho más sencillo. Aquí lo explico en dos patadas. Eso sí, si hay algún astrónomo en la sala, les ruego que sean clementes y no se me lancen al cuello.

Otoño. Imagen de publicdomainpictures.net.

Otoño. Imagen de publicdomainpictures.net.

Sabemos que el Sol recorre el cielo todos los días, pero este camino va variando a lo largo del año. En un mediodía de verano lo vemos más alto en el cielo, mientras que en invierno sube hasta una altura menor. Imaginemos que la Tierra es un campo de juego. La línea del centro del campo es el ecuador que lo divide en dos mitades, lo que serían nuestros dos hemisferios. Yo me encuentro en el hemisferio norte, así que lo cuento desde mi perspectiva.

Durante la primavera, el Sol está en nuestro campo, y continúa adentrándose más en él hasta el 21 de junio, el comienzo del verano. Ese día alcanza su punto más lejano del centro del campo (el ecuador) y más cercano a nuestra portería, trayéndonos más horas de luz y menos de noche. A partir de entonces, comienza a retirarse hasta el comienzo del otoño (este año, 22 de septiembre); ese día cruza el centro del campo, el ecuador, y continúa su recorrido por el campo contrario (el hemisferio sur) hasta el 21 de diciembre (comienzo del invierno). Y luego, vuelta a empezar.

En resumen: los días de comienzo de primavera y otoño son los dos momentos del año en que el Sol cruza el ecuador. Y dado que esos dos días está en territorio neutral, el día y la noche duran entonces exactamente lo mismo en todos los puntos del planeta: 12 horas de luz, 12 horas de oscuridad. A partir del comienzo del otoño, en el hemisferio norte la noche comienza a ganar minutos al día, mientras que en el sur es al contrario.

Pero debo aclarar que, en la situación real, no tenemos calor en verano y frío en invierno porque el Sol esté más cerca o más lejos de nosotros; nuestra distancia a él es siempre tan grande que esto no influye. La razón de la diferencia de temperatura entre las estaciones se debe a que sus rayos nos caen más directamente en verano y más de refilón en invierno, cuando lo vemos ascender más perezosamente por el cielo.

Así que, lo prometido:

Primera patada: el otoño es cuando el Sol cruza el ecuador para marcharse hacia el hemisferio sur.

Segunda patada: el primer día del otoño es cuando el día dura lo mismo que la noche, antes de que la noche empiece a ganar minutos al día.

Pero aún hay otra patada extra:

Otro de los signos típicos del otoño es que las hojas comienzan a amarillear y a caerse. Pero ¿cómo saben las plantas que ha llegado el otoño? En contra de lo que pudiera parecer, no se debe a las temperaturas, sino a la luz. Es la diferencia en la duración de los días lo que informa a las plantas de que ha llegado el otoño.

En realidad los vegetales no necesitan estar continuamente pendientes de la señal exterior de luz: cuentan con un reloj interno que funciona solo y que les permite guiarse. Este reloj interno sigue activo incluso si las mantenemos con iluminación artificial, aunque las plantas cuentan con el Sol para ajustar su reloj, del mismo modo que nosotros comprobamos el móvil de vez en cuando para poner en hora los relojes de casa.

Girasol. Imagen de Wikipedia.

Girasol. Imagen de Wikipedia.

Un estudio publicado este pasado agosto ha mostrado cómo funciona el reloj interno de las plantas para el caso de los girasoles, con su maravillosa habilidad de contemplar el Sol en su camino a través del cielo. Y con su maravilloso regalo de las pipas.

Sabemos que los girasoles miran al Sol cuando sale por el este y después van rotando su cabeza a medida que transcurre el día, hasta que acaban de cara hacia el oeste en el ocaso. Durante la noche, vuelven a girar para esperar el regreso del Sol al alba.

Los investigadores, de las Universidades de California y Virginia, crecieron las plantas en un espacio interior con una iluminación fija. Descubrieron que durante unos días los girasoles continuaban ejecutando su ritual de este-oeste, hasta que se detenían; se paraban cuando trataban de poner en hora su reloj sincronizándolo con el Sol, pero no lo conseguían.

A continuación, los científicos crearon un día artificial, encendiendo y apagando luces de este a oeste en el espacio interior. Los girasoles volvían entonces a recuperar su movimiento. Pero curiosamente, cuando los investigadores estiraban el día artificial hasta las 30 horas, las plantas perdían la orientación; su reloj interno, como los que fabricamos los humanos, no puede manejar días de 30 horas.

Para entender cómo los girasoles controlan su movimiento, los investigadores pintaron puntos de tinta en ambos lados del tallo, que miran respectivamente hacia el este y el oeste, y midieron la distancia entre ellos a lo largo del tiempo. Descubrieron entonces que durante el día crece más la cara del tallo orientada hacia el este, mientras que por la noche ocurre lo contrario. Este crecimiento diferente en ambos lados del tallo, que está controlado por genes dependientes del reloj interno y de la luz, es el que consigue que la cabeza vaya girando a lo largo del ciclo de 24 horas.

En resumen, el girasol tiene dos tipos de crecimiento: uno continuo, como el resto de plantas, y otro controlado por el reloj interno, cuya precisión depende de esa sincronización con el Sol.

Pero aún falta lo mejor. Los autores del estudio se preguntaron por qué los girasoles, cuando maduran, se quedan permanentemente mirando hacia el este. Y descubrieron algo asombroso: las plantas que miran hacia el este cuando sale el Sol se calientan más por la mañana, y esta mayor temperatura atrae a los insectos polinizadores. Los girasoles encarados hacia la salida del Sol recibían cinco veces más visitas de abejas que las flores inmovilizadas por los investigadores para que miraran hacia el oeste. Cuando anulaban la diferencia de temperatura utilizando un calefactor, las abejas visitaban por igual ambos grupos de flores.

Así, las plantas que esperan a ser polinizadas se quedan de cara al este porque eso les permite reproducirse con mayor facilidad. Pero entonces, ¿por qué no se quedan siempre en esa posición?, se preguntarán. También hay una razón para esto: las plantas que siguen el movimiento del Sol durante su crecimiento reciben así más luz, y consiguen hojas más grandes.

Eso es todo. ¿Ven cómo se puede explicar sin mencionar las palabras equinoccio, solsticio, eclíptica o ritmos circadianos?

Cuando comer cadáver humano estaba de moda en Europa

Hace unos días elaboré una lista de diez libros sobre ciencia para leer este verano (aún no publicada), algo que suelo hacer por estas fechas para cierto medio. Por desgracia y como bien saben los periodistas de cultura (me consta como autor), aunque tal vez no el público en general, el ritmo del trabajo periodístico y las limitaciones del cerebro humano imposibilitan el leer diez libros en un par de días, así que debemos conformarnos con un análisis de la estructura y un muestreo del contenido con eso que suele llamarse lectura en diagonal (en realidad tan absurdo como, por ejemplo, hablar de practicar sexo en diagonal; o hay sexo, o no hay sexo).

Entre los libros que reseñé hay uno que reposa justo a la izquierda de estas líneas que escribo y que espera la primera oportunidad para hincarle el diente. Lamentablemente, debo aclarar que (aún) no hay una traducción española. Y más lamentablemente aún, y por si alguien se lo pregunta, hay por ahí una mayoría de libros magníficos sobre temas relacionados con la ciencia que jamás se traducen ni se traducirán al español.

Por poner sólo un caso, aún me hace frotarme los ojos que The Making of the Atomic Bomb de Richard Rhodes, publicado en 1986 y ganador del premio Pulitzer en 1988 (ha habido tiempo suficiente), traducido a una docena de idiomas, no esté disponible en castellano (y si alguna vez lo estuvo, que no lo puedo saber con certeza, estaría descatalogado). Y que en cambio sí se traduzcan otras cosas, de las que no voy a poner ejemplos.

mummiescannibalsandvampiresPero voy al grano. El libro en cuestión es Mummies, Cannibals and Vampires: The History of Corpse Medicine from the Renaissance to the Victorians, o traducido, Momias, caníbales y vampiros: La historia de la medicina de cadáveres del Renacimiento a los victorianos. Su autor es Richard Sugg, profesor de literatura de la Universidad de Durham (Reino Unido). La novedad es que recientemente se ha publicado una segunda edición y, al tratarse de un trabajo de investigación, el autor ha incluido nuevos materiales. En Amazon España se puede comprar la nueva edición en versión Kindle, pero en papel solo está disponible la primera edición. Quien quiera la nueva versión en papel podrá encontrarla en Amazon UK.

Lo que Sugg cuenta en su libro es un capítulo de la historia de Europa desconocido para la mayoría: el uso de partes de cadáveres humanos, como huesos, piel, sesos, grasa, carne o sangre, para tratar múltiples enfermedades, desde la epilepsia a la gota, el cáncer, la peste o incluso la depresión. Resulta curioso, como conté recientemente en un reportaje, que los navegantes y exploradores europeos tildaran fácilmente de caníbales a las tribus indígenas con las que se encontraban en sus viajes por el mundo, cuando también ocurría precisamente lo contrario, que los nativos veían a aquellos extranjeros como antropófagos.

Pero si los europeos a veces estaban en lo cierto, no menos los indígenas: la medicina de cadáveres fue muy popular en Europa durante siglos, y no como algo marginal y secreto. Al contrario, no era un material fácilmente accesible, por lo que su uso era frecuente entre la nobleza, el clero y las clases acomodadas. Y aunque fue desapareciendo en el último par de siglos, se registran casos incluso a comienzos del siglo XX: según una de las fuentes de mi reportaje, en 1910 todavía una compañía farmacéutica alemana listaba en su catálogo de productos el polvo de momias expoliadas de Egipto, uno de los productos estrella de la medicina de cadáveres.

Ahí dejo la sugerencia; un libro muy recomendable para este verano. Pero intrigado por saber algo más sobre las investigaciones de Richard Sugg, me puse en contacto con él y le hice algunas preguntas sobre la historia del canibalismo. Esto es lo que el autor me contó. Lean, que merece la pena.

¿Cómo surgió la medicina de cadáveres?

La práctica médica en Europa parece haber surgido en la Edad Media. Pero a pesar de que suele repetirse que fue un fenómeno puramente medieval, se prolongó entre los ilustrados hasta mediados del siglo XVIII y probablemente alcanzó su esplendor a finales del XVII, precisamente cuando comenzaba la Revolución Científica. Todavía en 1770 había un impuesto sobre los cráneos importados de Irlanda para utilizarse como medicinas en Gran Bretaña y Alemania.

¿Cuándo empezó el canibalismo a convertirse en un tabú entre los seres humanos?

Por su propia naturaleza, sabemos muy poco de las tribus caníbales aisladas en períodos antiguos. Aunque el canibalismo de subsistencia es diferente, el hecho de que estos episodios se registraran nos indica que se estaba violando un tabú. Un ejemplo temprano es el del sitio de Samaria (724-722 a. C.), cuando supuestamente las madres se comieron a sus propios hijos. Más tarde, el cristiano Tertuliano (c. 150-222 d. C.) informaba irónicamente sobre las leyendas urbanas en torno a esta nueva secta, a cuyos miembros se les acusaba de asesinar a niños y beberse su sangre. También la siniestra reputación de los cristianos en aquella época implica que el canibalismo ya era un tabú.

Pero nunca ha llegado a desaparecer.

El canibalismo y beber sangre han sido recursos en todas las épocas en casos de hambrunas, naufragios y otras situaciones desesperadas. Hay muchos relatos de ello en travesías marítimas en el siglo XIX. El caso más notorio fue el de un grumete, Richard Parker, asesinado para comérselo después del naufragio del yate Mignonette en 1884. Un caso más reciente ocurrió después del fiasco de la Bahía de Cochinos en 1961, cuando un grupo de exiliados cubanos recurrió al canibalismo estando a la deriva en el mar durante 16 días. En 1998 The Times contaba el caso de Julio Pestonit, de 57 años, que relató al canal de noticias Fox en Nueva York cómo por entonces, con 20 años, fue uno de los 1.500 exiliados implicados en el intento frustrado de invasión de Cuba con el apoyo de la CIA. Tras eludir la captura, 22 exiliados se hicieron a la mar en un bote muy frágil sin comida ni agua, y pronto empezaron a morir. Pestonit dijo: “El grupo comió un cadáver con mucha reticencia. Yo comí algo del interior del cuerpo que me pasaron. Era una locura. Era como estar en el infierno”.

¿Sigue siendo práctica habitual hoy en algunas culturas?

El canibalismo intrínseco o ritual en ciertas tribus puede ser una táctica para aterrorizar a los enemigos, o bien puede ser un rito funerario, lo cual es una práctica formal religiosa y consensuada. En el primer caso las víctimas suelen saber que serán comidas si los matan; entre los tupinamba de Brasil la víctima capturada era incorporada a la tribu de sus captores durante un año, se le daba una esposa, tenía un hijo, y trabajaba junto a los demás antes de ser asesinado y devorado ceremonialmente. En ambos casos la práctica puede incluir un deseo de reciclar o absorber el poder espiritual o el alma de la persona. Daniel Korn, Mark Radice y Charlie Hawes han mostrado que en el caso de los caníbales de Fiji esto era muy preciso: creían que el espíritu se aferraba al cadáver durante cuatro días. Comer el cuerpo aniquilaba el espíritu y le impedía ascender al mundo de los espíritus para servir de guía y dar fuerza al enemigo.

¿Diría que antiguamente los exploradores occidentales utilizaron todo esto como excusa para justificar la necesidad de colonización con el fin de “civilizar a los salvajes”?

Así es. En 1503, la reina Isabel de España dictó que sus compatriotas podían legítimamente esclavizar solo a los caníbales. Por supuesto, esto impulsó la invención de caníbales que no existían, aunque ciertamente los había. En 1510, el Papa Inocencio IV definió el canibalismo como un pecado que los soldados cristianos estaban obligados a castigar, no solo que tuvieran el derecho de hacerlo. Si creemos los relatos del testigo y jesuita español Bartolomé de las Casas (1474-1566), los invasores españoles terminaron haciendo a los habitantes nativos, caníbales o no, cosas mucho peores que esta.

Mucho más reciente es el caso relatado por la antropóloga Beth A. Conklin. Al parecer en la década de 1960 los wari’, una tribu de Brasil, todavía practicaban canibalismo funerario. Cuando los misioneros cristianos llegaron allí, llevaron consigo enfermedades contra las que los wari’ no estaban inmunizados, y les dieron medicinas solo con la condición de que abandonaran lo que para ellos era una práctica solemne y una parte importante de la psicología del duelo y la pérdida. En todos estos casos, exceptuando el canibalismo de subsistencia, la práctica de comer personas ha sido altamente cultural, y no una actividad puramente natural o bestialmente salvaje.

Este es el mejor monólogo sobre ciencia jamás escrito

Les aseguro que no les traería aquí un vídeo de 20 minutos y 46 segundos, en inglés y sin subtítulos en castellano, si no fuera porque es el comentario sobre el funcionamiento de la ciencia –y su comunicación– más atinado e informado, además de divertido, que jamás he visto en un medio televisivo (medio al que, todo hay que decirlo, no soy muy adepto). Si dominan el idioma, les recomiendo muy vivamente que lo sigan de cabo a rabo (el final es apoteósico). Y si no es así, a continuación les resumiré los fragmentos más sabrosos. El vídeo, al pie del artículo.

John Oliver. Imagen de YouTube.

John Oliver. Imagen de YouTube.

Su protagonista es John Oliver, humorista británico que presenta el programa Last Week Tonight with John Oliver en la HBO estadounidense. Oliver despliega un humor repleto de inteligencia e ironía, de ese que no suele abundar por aquí. Hace algo más de un año traje aquí una deliciosa entrevista de Oliver con el físico Stephen Hawking.

En esta ocasión, Oliver se ocupa de la ciencia, bajo una clara pregunta: ¿Es la ciencia una gilipollez? Naturalmente, el presentador no trata de ridiculizar la ciencia, sino todo lo contrario, criticar a quienes dan de ella una imagen ridícula a través de la mala ciencia y el mal periodismo.

Para ilustrar cuál es el quid, comienza mostrando algunos fragmentos de informativos de televisión en los que se anuncian noticias presuntamente científicas como estas: el azúcar podría acelerar el crecimiento del cáncer, picar algo a altas horas de la noche daña el cerebro, la pizza es la comida más adictiva, abrazar a los perros es malo para ellos, o beber una copa de vino equivale a una hora de gimnasio.

Sí, ya lo han adivinado: la cosa va de correlación versus causalidad, un asunto tratado infinidad de veces en este blog; la última de ellas, si no me falla la memoria, esta. Les recuerdo que se trata de todos aquellos estudios epidemiológicos del tipo “hacer/comer x causa/previene y”. Estudios que se hacen en dos tardes cruzando datos en un ordenador hasta que se obtiene lo que se conoce como una “correlación estadísticamente significativa”, aunque no tenga sentido alguno, aunque no exista ningún vínculo plausible, no digamos ya una demostración de causalidad. Pero que en cambio, dan un buen titular.

Naturalmente, a menudo esos titulares engañosos se contradicen unos a otros. Oliver saca a la palestra varias aseveraciones sobre lo bueno y lo malo que es el café al mismo tiempo, para concluir: “El café hoy es como Dios en el Antiguo Testamento: podía salvarte o matarte, dependiendo de cuánto creyeras en sus poderes mágicos”. Y añade: “La ciencia no es una gilipollez, pero hay un montón de gilipolleces disfrazadas de ciencia”.

Pero el humor de Oliver esconde un análisis básico, aunque claro y certero, sobre las causas de todo esto. Primero, no toda la ciencia es de la misma calidad, y esto es algo que los periodistas deberían tener el suficiente criterio para juzgar, en lugar de dar el ridículo marchamo de “lo dice la Ciencia” (con C mayúscula) a todo lo que sale por el tubo, sea lo que sea. Segundo, la carrera científica hoy está minada por el virus del “publish or perish“, la necesidad de publicar a toda costa para conseguir proyectos, becas y contratos. No son solo los científicos quienes sienten la presión de conseguir un buen titular; los periodistas también se dejan seducir por este cebo. Para unos y otros, la presión es una razón de la mala praxis, pero nunca una disculpa.

El vídeo demuestra que Oliver está bien informado y asesorado, porque explica perfectamente cómo se producen estos estudios fraudulentos: manipulando los datos de forma más o menos sutil o descarada para obtener un valor p (ya hablé de este parámetro aquí y aquí) menor del estándar normalmente requerido para que el resultado pueda considerarse “estadísticamente significativo”; “aunque no tenga ningún sentido”, añade el humorista. Como ejemplos, cita algunas de estas correlaciones deliberadamente absurdas, pero auténticas, publicadas en la web FiveThirtyEight: comer repollo con tener el ombligo hacia dentro. Aquí he citado anteriormente alguna del mismo tipo, e incluso las he fabricado yo mismo.

Otro problema, subraya Oliver, es que no se hacen estudios para comprobar los resultados de otros. Los estudios de replicación no interesan, no se financian. “No hay premio Nobel de comprobación de datos”, bromea el presentador. Y de hecho, la reproducibilidad de los experimentos es una de las grandes preocupaciones hoy en el mundo de la publicación científica.

Oliver arremete también contra otro vicio del proceso, ya en el lado periodístico de la frontera. ¿Cuántas veces habremos leído una nota de prensa por el atractivo de su titular, para después descubrir que el contenido del estudio no justificaba ni mucho menos lo anunciado? Oliver cita un ejemplo de este mismo año: un estudio no encontraba ninguna diferencia entre el consumo de chocolate alto y bajo en flavonol en el riesgo de preeclampsia o hipertensión en las mujeres embarazadas. Pero la sociedad científica que auspiciaba el estudio tituló su nota de prensa: “Los beneficios del chocolate durante el embarazo”. Y un canal de televisión picó, contando que comer chocolate durante el embarazo es beneficioso para el bebé, sobre todo en las mujeres con riesgo de preeclampsia o hipertensión. “¡Excepto que eso no es lo que dice el estudio!”, exclama el humorista.

Otro titular descacharrante apareció nada menos que en la revista Time: “Los científicos dicen que oler pedos podría prevenir el cáncer”. Oliver aclara cuál era la conclusión real del estudio en cuestión, que por supuesto jamás mencionaba los pedos ni el cáncer, sino que apuntaba a ciertos compuestos de sulfuro como herramientas farmacológicas para estudiar las disfunciones mitocondriales. Según el humorista, en este caso la historia fue después corregida, pero los investigadores aún reciben periódicamente llamadas de algunos medios para preguntarles sobre los pedos.

Claro que no hace falta marcharnos tan lejos para encontrar este tipo de titulares descaradamente mentirosos. Hace un par de meses conté aquí una aberración titulada “La inteligencia se hereda de la madre”, cuando el título correcto habría sido “Las discapacidades mentales están más frecuentemente ligadas al cromosoma X”. No me he molestado en comprobar si la historia original se ha corregido; como es obvio, el medio en cuestión no era la revista Time.

Y por cierto, esta semana he sabido de otro caso gracias a mi vecina de blog Madre Reciente: “Las mujeres que van a misa tienen mejor salud”, decía un titular en La Razón. Para no desviarme de lo que he venido a contar hoy, no voy a entrar en detalle en el estudio en cuestión. Solo un par de apuntes: para empezar, las mujeres del estudio eran casi exclusivamente enfermeras blancas cristianas estadounidenses, así que la primera enmienda al titular sería esta: “Las enfermeras blancas cristianas estadounidenses que van a misa tienen mejor salud”. Y a ver cómo se vende este titular.

Pero curiosamente, la población del estudio no presenta grandes diferencias en sus factores de salud registrados, excepto en dos: alcohol y tabaco. Cuanto más van a misa, menos fuman y beben. Por ejemplo, fuma un 20% de las que no van nunca, 14% de las que acuden menos de una vez a la semana, 10% de las enfermeras de misa semanal, y solo el 5% de las que repiten durante la semana. Así que, ¿qué tal “Las enfermeras blancas cristianas estadounidenses que menos fuman y beben tienen mejor salud”?. Para esta correlación sí habría un vínculo causal creíble.

Claro que tampoco vayan a pensar que hablamos de conseguir la inmortalidad: según el estudio, las que fuman y beben menos/van a misa más de una vez por semana viven 0,43 años más; es decir, unos cinco meses. Así que el resultado final es: “El tabaco y el alcohol podrían robar unos cinco meses de vida a las enfermeras blancas cristianas estadounidenses”. Impresionante documento, ¿no?

Pero regresando a Oliver, el presentador continúa citando más ejemplos de estudios y titulares tan llamativos como sesgados: muestras pequeñas, resultados en ratones que se cuentan como si directamente pudieran extrapolarse a humanos, trabajos financiados por compañías interesadas en promocionar sus productos… El habitual campo minado de la comunicación de la ciencia, sobre el cual hay que pisar de puntillas.

Oliver concluye ilustrando la enorme confusión que crea todo este ruido en la opinión pública: el resultado son las frases que se escuchan en la calle, como “vale, si ya sabemos que todo da cáncer”, o “pues antes decían lo contrario”. El humorista enseña un fragmento de un magazine televisivo en el que un tertuliano osa manifestar: “Creo que la manera de vivir tu vida es: encuentras el estudio que te suena mejor, y te ciñes a eso”. Oliver replica exaltado: “¡No, no, no, no, no! En ciencia no te limitas a escoger a dedo las partes que justifican lo que de todos modos vas a hacer. ¡Eso es la religión!”. El monólogo da paso a un genial sketch parodiando las charlas TED. Les dejo con John Oliver. Y de verdad, no se lo pierdan.

2015, el año de CRISPR: llega la revolución genómica

Las doce campanadas del 31 de diciembre cerrarán un año científico que ha satisfecho su mayor expectativa: enseñarnos cómo es Plutón, completando el álbum de cromos de los principales cuerpos del Sistema Solar. Esta misión cumplida encabezaría el Top 10 de la ciencia en estos doce meses de no ser porque 2015 deberá recordarse como el año en que comenzó a hacerse palpable –y discutible, como ahora contaré– la promesa de CRISPR, la nueva tecnología que está llamada a revolucionar la edición genómica. Hoy hablamos de este avance que merece el número 1 en el elenco de los hitos científicos de 2015; mañana continuaremos con los demás.

Un embrión de cuatro células. Imagen de E.C. Raff and R.A. Raff / Indiana University.

Un embrión de cuatro células. Imagen de E.C. Raff and R.A. Raff / Indiana University.

Tal vez ustedes tengan la sensación de que llevan décadas oyendo hablar de la terapia génica y de que todas aquellas promesas aún no se han hecho realidad. Tengan en cuenta que la prensa pregona los éxitos, ignora los fracasos y siempre tiende a añadir coletillas que dejan la impresión de que cualquier nuevo avance será una panacea en unos pocos años.

Pero es cierto que la trayectoria de la terapia génica ha sido parecida al viaje de Frodo, con pronunciados altibajos y momentos de profundas crisis. Y con todo esto, como Frodo, este enfoque terapéutico continúa avanzando hacia su destino. Una revisión reciente en Nature proclamaba que la terapia génica vuelve a estar en el centro del escenario, gracias a los triunfos que han ido acumulándose en los últimos años. Y hoy las perspectivas son mejores que nunca gracias a CRISPR.

En este blog no he escatimado elogios hacia la que ahora se presenta como la gran tecnología genética del siglo que acaba de comenzar. En 2012 las investigadoras Emmanuelle Charpentier y Jennifer Doudna transformaron un mecanismo de defensa natural de las bacterias en el sistema más preciso y eficaz conocido hasta hoy para cortar y pegar genes. Desde entonces, CRISPR-Cas9 se ha convertido en el avance más revolucionario en biología molecular desde los años 70, cuando comenzaron a popularizarse las llamadas enzimas de restricción que hemos utilizado durante décadas.

El sistema CRISPR-Cas9, al que ya se han añadido otras variantes, permite editar genes, es decir, cortar y pegar trozos de ADN de forma dirigida y precisa, lo que extiende sus aplicaciones desde la investigación básica hasta la terapia génica; o incluso la recreación de los mamuts, como ya han avanzado este año al menos dos grupos de investigadores. Gracias a todo ello, Charpentier y Doudna ya no saben ni por dónde les llegan los premios; entre otros, el Princesa de Asturias de Investigación 2015, un fallo muy acertado.

Aunque CRISPR no es una tecnología surgida este año, 2015 ha sido un año clave por varias razones. Su uso se ha generalizado en los laboratorios, lo que ha permitido que aparezcan variantes, mejoras y nuevas maneras de aplicarlo. Pero también se ha abierto el debate sobre las perspectivas de aplicarlo a la edición genómica en embriones humanos destinados a la reproducción, un campo que podría traer inmensos beneficios, así como enormes desgracias si se emplea de forma prematura antes de haber alcanzado una tasa de error aceptable. Ya en marzo, Science y Nature publicaban sendos artículos en los que varios investigadores, entre ellos Doudna, advertían de estos riesgos. El título de la pieza en Nature lo dice todo: “No editéis la línea germinal humana”.

Pero alguien en un laboratorio chino ya se había adelantado. Como conté en su día, en abril la revista Protein & Cell publicaba el primer experimento de edición genómica en embriones humanos.

La regulación de la investigación con embriones es más laxa en algunos países orientales que en el mundo occidental, pero es importante aclarar que el experimento dirigido por Junjiu Huang en la Universidad Sun Yat-sen de Guangzhou utilizó exclusivamente embriones no viables; se trataba de cigotos procedentes de fertilización in vitro que tenían tres juegos de cromosomas en lugar de dos, debido a que los óvulos habían sido fecundados por dos espermatozoides al mismo tiempo. En condiciones naturales, estos embriones triploides mueren durante la gestación o al poco tiempo de nacer, y los que sobreviven lo hacen con graves defectos. En el caso de la fecundación in vitro, estos embriones se desechan o se utilizan para investigación en los países que así lo permiten.

El experimento de Huang no fue precisamente un éxito, como él mismo reconoció. Recojo lo que ya escribí a propósito de los resultados: el sistema CRISPR/Cas9 logró extraer quirúrgicamente el gen HBB en aproximadamente la mitad de los embriones supervivientes analizados, pero solo en pocos casos consiguió reparar la brecha con la secuencia de reemplazo. Aún peor, los científicos observaron que en varios casos la enzima cortó donde no debía y que algunas de las brechas se rellenaron empleando erróneamente otro gen parecido como modelo, el de la delta-globina (HBD), causando mutaciones aberrantes.

La repercusión del experimento de Huang fue mucho mayor de la que habría correspondido a sus resultados científicos, debido a que abría una puerta que para muchos debería permanecer cerrada, al menos hasta que la tecnología CRISPR garantice un nivel mínimo de éxito. Tras la publicación del estudio, algunos de los principales investigadores en el campo de la edición genómica decidieron convocar una reunión en Washington, con la participación de la Academia China de Ciencias, para debatir los aspectos éticos y tratar de acordar una recomendación común.

El encuentro tuvo lugar a comienzos de diciembre y se saldó con una declaración final que, curiosamente (o tal vez no), fue interpretada de formas casi opuestas por medios ideológicamente diversos; en algunos diarios online se leía que los científicos habían dado luz verde a la manipulación genética de embriones humanos, mientras que otros aseguraban que se había establecido una moratoria. Pero ni una cosa ni otra; la declaración final decía exactamente que “sería irresponsable proceder con cualquier uso clínico de la edición en células germinales [espermatozoides y óvulos]”, pero aconsejaba que la cuestión sea “revisitada a medida que el conocimiento científico avance y la visión de la sociedad evolucione”.

Ni sobre los aspectos científicos de CRISPR ni sobre los éticos se ha dicho ya la última palabra. Respecto a lo primero, CRISPR es una nueva técnica en progreso que continuará sorprendiéndonos en los próximos años. Y en cuanto a lo segundo, los expertos recomendaron la creación de un foro internacional permanente que asuma el seguimiento y la reflexión sobre lo que será posible o no, lícito o no, gracias a esta potente tecnología que ha inaugurado la biología molecular del siglo XXI.

Isaac Newton y los dragones

Se ofenda quien se ofenda, tan risibles, ridículas y banales me parecen esas descacharrantes palabras del obispo de Córdoba al definir la fertilización in vitro como un “aquelarre químico” contrario al “abrazo amoroso” del que, según él, deben nacer los hijos (ahí tendrás a muchas pobres chiquillas temiendo quedarse embarazadas por un abrazo), como la arrogancia cristianofóbica de quienes todos los años y tal día como hoy, cumpleaños de Isaac Newton, aprovechan la ocasión para ciscarse en las libres creencias de otros. Allá cada cual, pero los fanatismos son fanatismos, ya los inspire la religión o la ciencia.

Isaac Newton en 1689 por Godfrey Kneller. Imagen de Wikipedia.

Isaac Newton en 1689 por Godfrey Kneller. Imagen de Wikipedia.

Hay algo que sí me gustaría recomendar a estos últimos (sobre el primero creo que no es preciso añadir nada más): que indaguen un poco más en el perfil biográfico de aquel a quien parecen venerar como príncipe de la razón. Newton fue teólogo además de científico, y estuvo a un pelo de ordenarse como pastor anglicano. Hoy se le considera un hereje por su postura antitrinitaria, que comprensiblemente ocultó, y que dominó su pensamiento religioso desde el centro de su esfuerzo intelectual.

Pero fuera de esta ineludible vertiente religiosa de Newton, que en realidad no incumbe a este blog, vengo a destacar otra faceta de su pensamiento que sí entronca con la ciencia, pero que tampoco cuadra con la imagen del racionalista puro con la que muchos parecen identificarle erróneamente. Lo cierto es que Newton fue un tipo fascinante y algo loco. Entre sus facetas menos conocidas se cuenta que, durante su cargo como director de la Casa de la Moneda en Gran Bretaña, inventó las estrías en el canto de las monedas que hoy son tan comunes. Entonces las monedas se fabricaban con metales preciosos, y el propósito de esta innovación fue evitar que los falsificadores rasparan los bordes para sisar una parte del oro.

Esta y otras historias de Newton como el Sherlock Holmes que perseguía a los falsificadores de moneda se cuentan con la tensión narrativa de los mejores thrillers en el libro de Thomas Levenson Newton y el falsificador, publicado en castellano por la editorial Alba en 2011. Un buen regalo para estas fiestas.

Pero Newton también era un ocultista apasionado. Hay quien le ha definido como el último de los alquimistas. Probablemente no lo fue, pero tal vez sí el último de los grandes alquimistas. Newton, como Harry Potter, perseguía la piedra filosofal, como conté con detalle en este reportaje que publiqué en 2010. El economista John Keynes, gran conocedor de la figura de Newton, le definió así:

Newton no fue el primero de la Edad de la Razón. Fue el último de los magos, el último de los babilonios y los sumerios, la última gran mente que miró al mundo visible e intelectual con los mismos ojos que aquellos que comenzaron a construir nuestro mundo intelectual hace menos de 10.000 años.

Naturalmente, la visión de Keynes no es compartida por todos. Hay quienes ven en el trabajo alquímico de Newton un esfuerzo precursor de la química moderna, ya que las transmutaciones metálicas de los alquimistas anticiparon el estudio de las reacciones químicas. Pero esta visión también estaría, para mi gusto, un poco sesgada, ya que en tiempos de Newton hubo otros científicos como Robert Boyle o su tocayo Hooke que realmente sí estaban transmutando la vieja alquimia en la química moderna, al distinguir entre magia y ciencia. Y mientras tanto, Newton escribía cosas como esta:

Nuestro esperma crudo fluye de tres sustancias, de las que dos se extraen de la tierra de su natividad por la tercera y después se convierten en una pura Virgen lechosa como la naturaleza obtenida del Menstruo de nuestra sórdida ramera. Estos tres manantiales son el agua, la sangre (de nuestro León verde totalmente volátil y vaciado de azufre metalino), el espíritu (un caos, que se aparece al mundo en una vil forma compacta, al Filósofo unida a la sangre de nuestro León verde, del que así se hace un león capaz de devorar a todas las criaturas de su clase…).

Una de las ilustraciones de los dragones alpinos en la obra de Johann Jakob Scheuchzer.

Una de las ilustraciones de los dragones alpinos en la obra de Johann Jakob Scheuchzer.

Pero hay un último aspecto de Newton que se ha divulgado y estudiado aún menos, y en el que posiblemente todavía quede un filón biográfico para quien quiera explorarlo y documentarlo. Contemporáneo de Newton fue un médico y científico suizo llamado Johann Jakob Scheuchzer. Entre los trabajos de Scheuchzer destaca uno titulado muy sencillamente Ouresiphoites Helveticus, sive itinera Alpina tria: in quibus incolae, animalia, plantae, montium altitudines barometricae, coeli & soli temperies, aquae medicatae, mineralia, metalla, lapides figurati, aliaque fossilia; & quicquid insuper in natura, artibus, & antiquitate, per Alpes Helveticas & Rhaeticas, rarum sit, & notatu dignum, exponitur, & iconibus illustratur. O de forma algo más breve, Itinera alpina tria, sus viajes alpinos.

Durante sus viajes por los Alpes, entre 1702 y 1704, Scheuchzer describió la naturaleza que observaba a su paso. Pero sus méritos como naturalista han sido puestos en duda por el hecho de que incluyó referencias a la presencia de dragones en los Alpes; no observados por él directamente, sino por testigos, pero sí con todas sus especies alpinas representadas en láminas en su obra. El suizo describía el método para dormir a un dragón con hierbas soporíferas y aprovechar su sueño para cortarle de la cabeza una piedra que poseía enormes propiedades curativas.

Pues bien, el principal patrocinador de la expedición y de la obra de Scheuchzer para la Royal Society londinense no fue otro que nuestro buen amigo Newton, quien según algunas fuentes era también un defensor de la existencia de los dragones. La creencia en estos animales míticos tradicionalmente vino alimentada por el hallazgo de fósiles que hoy conocemos como dinosaurios, sobre todo en China. En tiempos de Newton aún no se conocía el origen de aquellos huesos, pero sí su existencia; en Europa se les atribuían orígenes diversos, desde elefantes de guerra empleados por los romanos hasta gigantes humanos. ¿Creía Newton que los fósiles europeos de dinosaurios eran restos de dragones? ¿Hasta qué punto llegaba su creencia en estas criaturas míticas? En cualquier caso, todo esto no hace sino aumentar el atractivo de un personaje tan genial como conflictivo para quienes pretenden hacer de él un ser unidimensional.

El juego de la evolución tiene “nuevas reglas”

En 2005 dos genetistas y bioquímicas, Eva Jablonka y Marion J. Lamb, sacudieron el armazón de la biología con un libro titulado Evolution in Four Dimensions (Evolución en cuatro dimensiones), que en pocos años se ha convertido ya en una de las obras clásicas (léase imprescindibles) sobre el pensamiento evolutivo.

Lo que la israelí Jablonka y la británica Lamb proponían era una ampliación del enfoque de la evolución biológica a toda variación heredable de generación en generación, no solo a lo que una máquina secuenciadora de ADN puede leer. Con esta visión, la información genética estrictamente codificada en forma de A, G, T y C sería solo una de las dimensiones de la evolución, pero habría otras tres: los rasgos epigenéticos (ahora explico), los comportamientos sociales inculcados, y el pensamiento simbólico exclusivo de los humanos.

Los dos últimos podrían considerarse a simple vista como un viraje hacia la psicología evolutiva con escasa implicación en los mecanismos de variación de las especies, pero en realidad no es así: lo que Jablonka y Lamb argumentaban es que estas dos dimensiones son también biológicas, ya que los cuatro aspectos interactúan constantemente entre sí, de modo que la tradición social y la cultura también se ven influidas por los mecanismos genéticos y epigenéticos.

Nos queda explicar este último término. Lo epigenético es lo que está sobre lo genético. A finales del siglo pasado, se generalizó esta denominación para ciertos cambios químicos en la molécula de ADN que no son mutaciones, porque no afectan a la secuencia –CCGTACCGGT seguirá siendo CCGTACCGGT–, pero que sin embargo sí determinan la actividad de un gen, por ejemplo silenciándolo, es decir, volviéndolo invisible para la maquinaria encargada de hacer que los genes hagan lo que deben hacer. Imaginemos que borramos una palabra de un documento con típex; la palabra seguirá ahí, debajo de la franja blanca, pero no podremos leerla porque se ha vuelto invisible para nuestro mecanismo de lectura, la vista.

Los cambios epigenéticos pueden aparecer por estímulos de nuestro entorno, como los alimentos o los contaminantes ambientales. Y si afectan también al espermatozoide o al óvulo, nuestros hijos los heredarán. Es decir, que nuestra descendencia podría tener alterada la actividad de un gen debido a nuestra dieta; no solo la de la madre en gestación, como tradicionalmente se asumía, sino incluso la de la futura madre aún no gestante o la del futuro padre.

Retrato de Jean-Baptiste Lamarck por Charles Thévenin, 1802-3. Imagen de Wikipedia

Retrato de Jean-Baptiste Lamarck por Charles Thévenin, 1802-3. Imagen de Wikipedia

Esta posibilidad de transmitir a nuestros hijos ciertos rasgos que adquirimos durante nuestra vida, y que vienen determinados por lo que hacemos o dejamos de hacer, era un concepto que formaba parte de la teoría de la evolución definida por el francés Jean-Baptiste Lamarck, anterior a Darwin. Pero cuando Darwin llegó a la conclusión de que las variaciones heredables se producían al azar (aún no se conocían los genes, ni por tanto las mutaciones), y que el hecho de que prendieran o no en la especie se debía a la selección natural, las ideas de Lamarck quedaron abandonadas.

Con el descubrimiento de la epigenética, algunos biólogos han rescatado la visión de Lamarck, mientras que para otros este es un camino que lleva a la confusión. Al fin y al cabo, es sorprendente lo poco que se comprende la evolución entre el público en general. A menudo se escuchan expresiones como “adaptarse o morir”, “la naturaleza se perfecciona”, la “lucha por la supervivencia” o la “supervivencia del más fuerte”; ninguna de ellas es darwiniana. Las dos primeras son más bien lamarckianas. Y las dos últimas, si acaso, norrisianas, de Chuck.

Entre los supuestamente neolamarckistas está Jablonka, la coautora del libro al que me he referido, y a quien le he preguntado hasta qué punto el enfoque que proponen ella y Lamb sugiere que deberíamos sacar a Lamarck del rincón de los castigos e incorporar sus ideas en una nueva visión de la evolución. La respuesta de la bióloga es que no trata de defender que la mutación al azar deje de ser el principal mecanismo que dirige la evolución a largo plazo: “El hecho de que los mecanismos lamarckianos puedan haber evolucionado por selección natural de mutaciones al azar les niega un lugar central en la evolución una vez que existen”, reconoce. “No cuestionamos la noción de lo aleatorio”, añade.

Pero Jablonka sí piensa que la evolución ha cambiado; la evolución también evoluciona, y su postura es que en adelante hay nuevas reglas: “Puedes pensar en un juego cuyas reglas evolucionan; las nuevas reglas ahora dirigen, o son parte de lo que dirige, el juego de la evolución”.

En resumen, quédense con esta idea: aunque el darwinismo puro quedó superado hace ya décadas debido a sus limitaciones, muchas de las cuales el propio Darwin reconoció en su obra, la variación aleatoria y la selección natural continúan siendo los principales motores de la evolución para la mayoría de los científicos. Pero otros mecanismos se han ido añadiendo con el tiempo, y hoy incluso algunas ideas descartadas hace más de un siglo tienen cabida en el estudio del problema central de la biología teórica.

El primer Einstein fue quemado vivo

Nada mejor para colocar el chorro final de nata a esta semana dedicada a Einstein que una vuelta a los orígenes. El otro día conté que, según el punto de vista del propio físico alemán, la que hoy se recuerda como su genialidad individual era realmente una consecuencia directa del trabajo de otros antes que él; esa imagen clásica en ciencia de ver más allá aupándose sobre los hombros de gigantes. O en otra más pop a lo Indiana Jones, recorrer el último tramo hasta el escondite del Santo Grial gracias a que otros fueron resolviendo las pistas del mapa. Lo cual no oscurece el mérito de Indy, ni el de Albert.

Retrato de Giordano Bruno (1548-1600). Imagen de Wikipedia.

Retrato de Giordano Bruno (1548-1600). Imagen de Wikipedia.

En el caso de Einstein, él mismo citó a Faraday, Maxwell y Lorentz. En el principio hubo un londinense inigualable llamado Michael Faraday, un humilde aprendiz de encuadernador que nunca fue a la Universidad y que a pesar de ello descubrió el electromagnetismo; de él deberíamos acordarnos cada vez que pulsemos un interruptor y se haga la luz. Su relevo lo recogió un aristócrata escocés llamado James Clerk Maxwell que tradujo a ecuaciones lo que Faraday había descubierto.

Poco después el holandés Hendrik Lorentz comenzó a trabajar sobre las ecuaciones de Maxwell, descubriendo que se podía aplicar a ellas un tipo de transformaciones para hacerlas funcionar en cualquier sistema de referencia. Dicho de otro modo, que las leyes eran siempre válidas si dejamos de contemplar el espacio y el tiempo como términos absolutos; si olvidamos la ficción de que en el espacio existe algo que lo rellena y que permite definir un punto fijo. Lo que Einstein empleó como premisa, la constancia de la velocidad de la luz en el vacío, era una consecuencia del trabajo de Lorentz sobre las ecuaciones de Maxwell que explicaban las observaciones de Faraday.

Los sistemas de referencia a los que se aplicaban las transformaciones de Lorentz son aquellos que se mueven uno respecto al otro a una velocidad constante. Este es el escenario de la relatividad especial, descrito por Einstein en 1905 y que diez años más tarde amplió al caso más general que incluye la aceleración, en el que por tanto encajaría la gravedad y, con ella, todo el universo.

Pero fijémonos en esta situación de dos sistemas que se mueven uno respecto al otro a velocidad constante. No es un concepto físico abstracto. Cuando volamos en un avión, si no miramos por la ventana, y si no fuera por el ruido de los motores y las posibles turbulencias, parecería que en realidad no estamos moviéndonos. Si dentro del avión pudiéramos lanzar hacia la proa a velocidad constante a una mosca dentro de una caja de cerillas (algo hoy ya imposible debido a las normas de seguridad), la mosca tampoco notaría su movimiento. La mosca y nosotros somos víctimas de una ilusión, porque en realidad nos desplazamos cuando creemos estar quietos. ¿O es al revés?

Mientras, la estela de nuestro avión en el cielo capta la atención de un turista, que reposa apaciblemente sobre una hamaca en una playa ecuatorial. Pero ¿en realidad reposa apaciblemente? El turista no cae en la cuenta de que él, su tumbona, la playa con sus palmeras y todo lo demás están desplazándose a una disparatada velocidad de 1.600 kilómetros por hora, la de la rotación de la Tierra en el Ecuador. Pero el turista no cae en la cuenta de esto porque la Tierra no lleva motores ni sufre turbulencias. Y cuando mira hacia lo que existe fuera de su enorme nave, observa que en apariencia son el Sol y las estrellas los que se mueven.

Todo esto nos lleva a la conclusión de que el movimiento es siempre relativo y que para un observador es imposible tener una constancia real (=física) de su movimiento. El siguiente vídeo lo ilustra de una manera impecable. En este programa de la BBC, el físico Brian Cox deja caer desde lo alto una bola de bolos y una pluma dentro de una cámara de vacío, para eliminar la interferencia del aire. Ambos objetos caen exactamente al mismo tiempo, dado que experimentan la misma aceleración debida a la gravedad, y por ello los dos llevan la misma velocidad en cualquier momento concreto de su caída.

Con esto se comprende por qué algo hoy obvio para nosotros, que la Tierra gira en torno al Sol, fue históricamente tan difícil de entender y de demostrar. Aristóteles lo dejó claro: si la Tierra se moviera, una piedra lanzada hacia arriba debería caer en trayectoria oblicua, y no en vertical, ya que el suelo avanzaría mientras la piedra está en el aire. Costó mucho demostrar que Aristóteles se equivocaba.

Los libros de ciencia le atribuyen este mérito a Galileo Galilei. El italiano aportó pruebas de observación que demostraban el modelo astronómico de Copérnico, según el cual la Tierra giraba en torno al Sol. Pero sobre todo, Galileo consideraba que tanto podía decirse que, para nosotros, el universo entero se movía respecto a la Tierra, como lo contrario: introdujo el concepto de relatividad.

En su obra Dialogo sopra i due massimi sistemi del mondo Tolemaico, e Coperniciano (Diálogos sobre los dos máximos sistemas del mundo), publicado en 1632, Galileo exponía el caso de un barco que se mueve a velocidad constante y sobre un mar en calma: alguien que estuviera experimentando con el movimiento de cualquier objeto en el interior del barco no notaría ninguna diferencia entre sus observaciones y las de alguien repitiendo los mismos experimentos en tierra.

Regresando brevemente hacia delante, la relatividad de Galileo sería el punto de partida que permitió a Isaac Newton formular sus leyes del movimiento, y siglos más tarde a Einstein recoger las transformaciones de Lorentz sobre las ecuaciones de Maxwell del fenómeno descrito por Faraday para concluir que la naturaleza se explicaba mejor suponiendo que las leyes físicas son inmutables y que, por tanto, son el espacio y el tiempo los que se deforman.

Volvamos ahora de nuevo hacia atrás. Lo cierto es que, como en el caso de Einstein, en realidad tampoco lo de Galileo fue un chispazo de genialidad individual. Desde Aristóteles, que puso los deberes, hubo otros gigantes que prestaron sus hombros, aunque Galileo no era demasiado propenso a reconocerlo: en 1610, su amigo Martin Hasdale le escribió una carta en la que decía:

Esta mañana tuve la oportunidad de hacerme amigo de Kepler […] Le pregunté qué le gusta de ese libro tuyo y me respondió que durante muchos años ha intercambiado cartas contigo, y que está realmente convencido de que no conoce a nadie mejor que tú en esta profesión […] Respecto a este libro, dice que realmente mostraste la divinidad de tu genio; pero estaba en cierto modo molesto, no solo por la nación alemana, sino por ti mismo, ya que no mencionaste a aquellos autores que iniciaron el asunto y te dieron la oportunidad de investigar lo que has hallado ahora, nombrando entre ellos a Giordano Bruno entre los italianos, a Copérnico y a sí mismo.

La carta figura en la colección de la correspondencia de Galileo, según recoge un estudio firmado por Alessandro De Angelis y Catarina Espirito Santo que se publicará próximamente en la revista Journal of Astronomical History and Heritage. Pero dejando aparte el censurable comportamiento de Galileo, y el hecho de que otros estudiosos como Jean Buridan o Nicole Oresme ya habían reflexionado en torno a las ideas que el italiano desarrollaría más tarde, De Angelis y Espirito Santo destacan un nombre que aparece en la carta de Hasdale y cuya contribución al principio de la relatividad no se ha reconocido: Giordano Bruno.

En 1584, Bruno publicó una obra titulada La cena de le ceneri (La cena del Miércoles de Ceniza) en la que empleó antes que Galileo el ejemplo del barco para enunciar que el avance de este era irrelevante de cara a cualquier observación del movimiento de las cosas en su interior. Esto lo atribuyó a una “virtud” por la cual todos los objetos del barco toman parte en su movimiento, estén en contacto con él o no. Según el estudio, Bruno estaba anticipando el concepto de inercia, la innovación introducida por Galileo (aunque acuñada por Kepler) que diferenciaba su visión de la de autores anteriores; para estos, el hecho de que un objeto suspendido dentro de un barco se moviera junto con la nave se debía a que era el aire el que lo arrastraba.

Según De Angelis y Spirito Santo, es probable que Galileo estuviera enterado del trabajo de Bruno e incluso que ambos llegaran a conocerse, ya que coincidieron en Venecia durante largos períodos. Pero aparte de que Galileo nunca admitiera esta influencia, los autores opinan que el hecho de que Bruno fuera quemado en la hoguera por sus ideas teológicas ha devaluado su contribución a la física. Así que por mi parte, y para cerrar esta semana de relatividad, vaya aquí mi recuerdo a Giordano Bruno, el primer Einstein, quemado vivo en Roma el 17 de febrero de 1600, en una época de matanzas auspiciadas por el fanatismo religioso. Y mi deseo de que ojalá esa época termine algún día.

El breve instante en que estamos aquí, y tal vez solos

Quizá hayan oído que estamos de aniversario. Este miércoles se cumplen cien años desde que Einstein culminó su presentación de la teoría general de la relatividad a la Academia Prusiana de Ciencias. Mañana contaré alguna cosa sobre Einstein y su trabajo, pero hoy quiero aprovechar la ocasión para traer aquí otro asunto que guarda cierta relación con uno de los conceptos einstenianos, el distinto transcurrir del tiempo según la situación del observador.

Muchas fuentes atribuyen a Einstein una cita sobre la relatividad, comparándola con la distinta percepción del tiempo según que uno lo pase con una “mujer hermosa”, suele decir la frase, o bien sentado sobre un fogón ardiente. Internet convierte en verdad que Fulano dijo X, y ya puede Fulano abandonar su pretensión de que jamás lo hizo. Pero aún queda alguna fuente rigurosa por ahí, como el blog Quote Investigator (QI), que rastrea los orígenes de presuntas citas. En este caso, QI llegó a la conclusión de que no hay ninguna prueba de la veracidad de la cita, pero concede que tal vez Einstein pudo dar esta explicación a su secretaria, Helen Dukas, quien le hacía de escudo frente a los molestos requerimientos de la prensa y el público, y que ella pudo transmitir esta idea a los medios.

Fotograma del vídeo de Business Insider.

Fotograma del vídeo de Business Insider.

Bien, a lo que iba. Obviamente, Einstein sabía mejor que nadie que la relatividad no trata de la percepción subjetiva del tiempo, sino que este transcurre de hecho de forma diferente en distintos sistemas. Pero si hablamos de esa impresión del correr del reloj, hoy les hablo de un vídeo que les ayudará a situar el tiempo en su justa perspectiva. Concretamente, el breve instante que ocupamos los humanos en todo esto.

Les hablo, porque lamentablemente no puedo insertarlo aquí, ya que el formato en su página original no lo permite. El medio que lo ha creado, Business Insider, suele colgar después sus vídeos en YouTube, pero aún no lo ha hecho con este. Se trata de un vídeo que muestra la historia de la Tierra como si fuera la distancia en línea recta de un viaje desde Los Ángeles hasta Nueva York. Las 2.450 millas (3.943 kilómetros) que separan ambas ciudades son los 4.540 millones de años de edad de esta roca mojada. El hecho de relacionar espacio y tiempo se convierte así también en un homenaje a Einstein, aunque no creo que fuera el propósito de sus autores.

A lo largo del viaje encontramos en qué momentos/puntos kilométricos van ocurriendo los distintos acontecimientos de la historia del planeta. Y por si les interesa, los humanos modernos aparecemos ya una vez que hemos llegado a Manhattan, a 570 pies (174 metros) del destino final. Toda nuestra historia registrada como especie ocupa solo los últimos 15,7 pies, menos de 5 metros. Desde la Segunda Guerra Mundial hemos recorrido 2,6 pulgadas, 6,6 centímetros. Pueden encontrar el vídeo aquí.

No es el primer ejercicio de este tipo que sitúa en perspectiva nuestra ínfima existencia como especie en la larga historia de la Tierra, pero quizá la analogía de las distancias nos facilita la imagen mental, ya que resulta muy fácil hacerse una idea sobre qué representan 174 metros, o 6 centímetros, en el recorrido total entre ambas ciudades.

Entre las muchas reacciones y reflexiones que el vídeo puede inspirar a cada cual, yo me quedo con una, la relativa a la vida alienígena. Recientemente escribí un reportaje dando voz a los científicos que sostienen la hipótesis pesimista de nuestra posible soledad en el universo. La idea es impopular, pero es tan científicamente argumentable como la contraria, aunque el público general tienda a descartarla bajo el sesgo geocéntrico. En realidad no tenemos ecuaciones que nos predigan de una manera solvente cuáles son las posibilidades reales de vida en otros lugares del universo; las únicas disponibles, como la famosa Ecuación de Drake, son puramente especulativas.

El caso es que ciertos físicos y filósofos de la ciencia tratan de parametrizar las variables implicadas con el fin de acercarse a una conclusión más fundamentada. La buena noticia (para quien le parezca tal, como a mí) es que algunos de ellos dan casi por segura la existencia de otras civilizaciones. La mala es que ahora han desplazado el foco tradicional, que solo se fijaba en el momento presente, a la historia completa del universo, o incluso a todo su pasado y todo su futuro. Me encantaría ver un vídeo como el de Business Insider, pero que mostrara toda la vida del universo, desde el Big Bang hace 13.800 millones de años, hasta que muera la última estrella del universo dentro de unos 100 billones de años. ¿Imaginan a cuánto quedaría reducida la presencia del ser humano?

No imaginen; ya se lo digo yo. Si las cuentas no me fallan, 7,9 milímetros. Más o menos la longitud de una mosca. Eso es lo que la existencia del ser humano representa en toda la trayectoria del universo desde el Big Bang (Los Ángeles) hasta que se agote el combustible de la última estrella (Nueva York). Con la salvedad, claro, de que nuestra extinción no es algo hoy previsible, pero sería muy optimista confiar en que aún estemos por aquí dentro de millones de años.

Así, si existiera al menos otra civilización tecnológica a lo largo de toda la vida del universo, un supuesto que algunos autores dan por estadísticamente muy probable, imaginen las posibilidades de que la suya y la nuestra coincidamos en algún momento de nuestra historia; es decir, que dos moscas situadas al azar entre Los Ángeles y Nueva York solapen al menos parcialmente. No imaginen; ya se lo digo yo: empleando una fórmula de probabilidad de intervalos solapantes, el resultado es más o menos de 0,000000004; o dicho de otro modo, de una posibilidad entre 250 millones.

No pretendo que estos cálculos sean impecables, y por supuesto que deberían tenerse en cuenta muchos otros factores. Pero estas cuentas de servilleta de bar (o más pomposamente, problema de Fermi) nos dan una aproximación útil de la que podemos concluir esto: si suponemos que el universo alumbra en toda su historia otra civilización inteligente además de la nuestra, la posibilidad de que coincidamos en el tiempo ellos y nosotros es de una entre 250 millones. Un poquito desolador, ¿no?

Salvando las distancias en física cuántica (II)

He aquí un motivo por el que algunos físicos aún no creen que los experimentos de entrelazamiento cuántico, como el de Hanson que mencioné ayer, demuestren la acción a distancia entre partículas: las mediciones sobre estas se llevan a cabo solo unos nanosegundos después de que ambas se hayan separado. Esto, sostienen los críticos, podría dar pie a que recuerden esa programación previa, ese guión que ambas estarían interpretando según lo acordado.

Así pues, lo único que un investigador puede hacer es tratar de fijar condiciones experimentales restrictivas en exceso, de una forma que convenza incluso a los más escépticos; como si un mago actuara desnudo para demostrar fehacientemente que no lleva nada escondido en la ropa. Para muchos físicos, la prueba de Hanson llega a este nivel, y por tanto basta para certificar oficialmente el nacimiento de la acción a distancia. Pero no para todos.

Ilustración artística del cuásar ULAS J1120+0641, el más distante conocido hasta ahora. Imagen de ESO/M. Kornmesser vía Wikipedia.

Ilustración artística del cuásar ULAS J1120+0641, el más distante conocido hasta ahora. Imagen de ESO/M. Kornmesser vía Wikipedia.

Con el fin de zanjar el debate, el físico del Instituto Tecnológico de Massachusetts David Kaiser se propone llevar a cabo lo que considera el experimento definitivo: medir dos fotones procedentes de estrellas distantes del universo, dos partículas que han estado separadas durante miles de millones de años. Es del todo imposible, argumenta Kaiser, creer razonablemente que las partículas puedan mantener ninguna clase de coordinación a través de toda la historia del universo. Si funciona, quienes aún creen que la acción a distancia es magia, ese efecto “spooky” o truculento que decía Einstein, deberán aceptar que se trata de ciencia real.

Sin embargo, Hanson no está de acuerdo en que el experimento de Kaiser vaya a demostrar nada que el suyo no haya probado ya. Otro de los críticos de la acción a distancia, el australiano Michael Hall, aducía que es difícil, incluso en un caso como el de Kaiser, asegurar una total independencia de las mediciones, ya que podría existir un sesgo provocado por algún tipo de correlación que se nos escapa entre los aparatos y aquello que miden, las partículas. “Por ejemplo, no todos los fotones detectados podrían proceder de las fuentes cósmicas a las que apuntan los telescopios; algunos vendrán de luz extraviada”, me escribía Hall en un correo electrónico. Además, proseguía Hall, “debería tener que asumirse que no se ha actuado de ninguna manera sobre los fotones a través de una causa común en el pasado relativamente reciente de los dos detectores utilizados”.

Hanson está de acuerdo en esto último: por mucho que los emisores de las partículas, las estrellas, estén separados en el espacio por miles de millones de años luz, y en el tiempo por miles de millones de años, los detectores no lo van a estar: ambos, y por tanto las partículas al medirlas, estarán aquí, en la Tierra. Con lo cual, razona el físico holandés, y puestos a ponernos escrupulosos, el experimento de Kaiser tampoco descartaría una posible relación causal entre los medidores y los sistemas medidos. “Ningún experimento puede probar que los ajustes de las mediciones fueron elegidos al azar, y ningún experimento puede probar que los ajustes están determinados por la luz estelar de una galaxia distante”, dice Hanson.

Para solventar este inconveniente, Hall apuntaba una propuesta: “Sería interesante tener un experimento en el que los propios detectores estuvieran separados por una gran distancia; la distancia Tierra-Luna sería un buen comienzo, ¡si alguna vez conseguimos llevar astronautas ahí arriba de nuevo! Marte sería aún mejor”. Pero aunque Hall y Hanson coincidan en la objeción a la propuesta de Kaiser, no lo hacen en sus consecuencias. Para el holandés, la conclusión es que es imposible llevar más allá la finura y la pulcritud de los experimentos de acción a distancia, ni siquiera llevando un detector a Marte: “Uno puede hacer el experimento de forma diferente, pero no será mejor que lo que ya hemos hecho; no queda ninguna fisura que pueda cerrarse experimentalmente”.

Lo que subyace a toda esta discusión, opina Hanson, es que algunos de los críticos no están discutiendo posibles deficiencias experimentales, sino la interpretación del propio teorema de Bell, explicado en bruto en mi artículo de ayer y que inspira los experimentos de entrelazamiento cuántico que ponen a prueba la acción a distancia. “Esta es una discusión teórica completamente independiente de nuestro experimento”, precisa Hanson. “Uno puede eliminar cualquiera de los muchos supuestos subyacentes en la derivación de la desigualdad de Bell”. “Pero estoy bastante seguro de que nadie podría diseñar un escenario que los abordara en ningún otro experimento”, prosigue, y concluye: “Nuestro experimento cierra todas las fisuras que pueden cerrarse; el resto no pueden distinguirse experimentalmente, y por tanto son parte intrínseca de las teorías”.

Dicho de otro modo: tal vez algunos físicos jamás acepten ninguna demostración empírica del teorema de Bell porque piensan que es indemostrable, o bien porque en el fondo piensan que es incorrecto. Y tal vez es comprensible que exista un cierto horror vacui, un miedo al vacío que el reconocimiento de la acción a distancia abriría en nuestro entendimiento de la física de la naturaleza y que no sería inmediato rellenar, dado que la actual formulación de la mecánica cuántica impide la posibilidad de su existencia.

Uno de los defensores de la acción a distancia, el estadounidense John Cramer, que está tratando de poner a prueba la comunicación no local entre partículas, me hacía notar que el problema parte del hecho de que esta prohibición no es algo que se haya demostrado, sino que se dio por sentado desde el principio y se integró en la definición de las reglas del juego: “Hay pruebas de que los creadores originales de la actual formulación utilizaron la imposibilidad de la señalización no local como directriz, y la incorporaron en el formalismo”, decía. “Si se hiciera una reformulación más imparcial de la mecánica cuántica eliminando este sesgo intrínseco, podría proporcionarnos una indicación de cómo se podría llevar a efecto la señalización no local”.

En realidad la solución teórica a lo anterior ya podría existir. Algunos físicos han mostrado que ciertas modificaciones a la mecánica cuántica actual (técnicamente se llama no-linealidad) permitirían que la comunicación superluminal –más rápida que la luz– encaje, pero hasta ahora ningún experimento ha demostrado que este enfoque sea válido. Claro que para los partidarios del modelo actual es al revés: dado que la comunicación superluminal no existe, la modificación propuesta no puede ser correcta, y por lo tanto nunca se demostrará. Las apuestas están abiertas.

Salvando las distancias en física cuántica (I)

El entrelazamiento cuántico es uno de los argumentos más palpitantes que se están ventilando hoy en el mundo de la ciencia, quizá lo más parecido a una revolución científica que tenemos ahora en ciernes y a la vista. No por la novedad del problema, pero sí por un cada vez más firme vislumbre de una solución que refuta al gran Einstein, como repasé hace unos días en un reportaje.

¿Acción a distancia? Imagen de Wikipedia.

¿Acción a distancia? Imagen de Wikipedia.

El hecho de que dos partículas cuánticas distanciadas puedan comportarse como un ballet sincronizado a ciegas, aparentemente comunicándose entre ellas por un mecanismo instantáneo, es decir, más rápido que la luz, es un fenómeno que ya hizo a Einstein rascarse su alborotada mata de pelo.

Precisamente porque nada puede, o podía, viajar más aprisa que la luz, el alemán no se lo creía: aquello no era ciencia, sino algo spooky, que viene a significar truculento o siniestro. Al fin y al cabo, precisamente él había construido la relatividad general, demostrando que la gravedad no actuaba a distancia, sino a través de un campo.

Nada puede actuar a distancia, pensaba Einstein, por lo que debía de existir un secreto solo conocido y compartido por las propias partículas, un conjunto de “variables ocultas” desconocidas e inaccesibles para la mecánica cuántica y que funcionaban cuando las partículas estaban juntas antes de separarse, y no a distancia. En otras palabras: las partículas conspiraban entre ellas de manera que ya sabían lo que harían después, sin que hubiera ninguna comunicación. Claro que no es fácil imaginar cómo podrían ponerse de acuerdo previamente para que una dijera “ay” exactamente cuando los investigadores pincharan a la otra; de ahí que fueran variables ocultas.

El de la posible acción a distancia fue uno de los problemas más erizados de la física durante gran parte del siglo XX; al menos, para quienes veían ahí un problema. Claro que a partir de 1964 ya nadie pudo mirar para otro lado: aquel año John Bell demostró que toda posible teoría de variables locales se quedaba corta a la hora de sostener lo que la mecánica cuántica podía hacer. Estas desigualdades comenzaron a convertirse en objeto de experimentación a partir de los años 70, y no han dejado de serlo hasta hoy.

Mientras los experimentos, uno detrás de otro, han ido cimentando la idea de que la acción a distancia parece ser real, no todos los físicos se han dejado convencer con la misma facilidad. El problema reside en que no es fácil demostrar que absolutamente todos los parámetros del experimento se están poniendo a prueba y no se han dado por hecho previamente.

Por poner un ejemplo sencillo, los ensayos clínicos escrupulosamente diseñados requieren un doble ciego: ni los médicos ni los pacientes saben quién está tomando la medicación y a quién se le ha administrado solo un placebo. Pero ¿quién ha hecho la selección? ¿Cómo la ha hecho? ¿Se puede asegurar al cien por cien que la distribución ha sido de verdad aleatoria y que nadie está enterado de qué paciente está tomando qué? ¿O puede haber existido algún sesgo o pequeña trampa, aunque sea involuntaria? Todo el que quisiera ponerse excesivamente tiquismiquis (qué gran palabra) a la hora de criticar un ensayo clínico podría cuestionar si el doble ciego realmente lo fue, o si algo de lo que los investigadores dicen o creen demostrar estaba en realidad ya determinado por las condiciones de partida del estudio.

En el caso de los experimentos sobre las desigualdades de Bell, estos resquicios han sido difíciles de rellenar. Pero para muchos físicos, el reciente estudio dirigido por Ronald Hanson, de la Universidad Tecnológica de Delft (Holanda), ha terminado por taparlos definitivamente. Hanson separó las partículas por más de un kilómetro y añadió una especie de venda más a los ojos de los aparatos para garantizar que las mediciones no se entendían entre ellas a espaldas de los investigadores, casi blindando la fidelidad de las observaciones.

El resultado, publicado en Nature, ha terminado de convencer a muchos de que nuestro universo, y con él, todo lo que conocemos, emplea de forma intensiva y rutinaria un “truculento” mecanismo de influjo a distancia que nosotros no podemos emplear para comunicarnos, pero sí las partículas subatómicas. ¿Es o no es una revolución? Lo realmente revolucionario no consiste en hacerle un Nelson a Einstein, que sería algo bastante feo e irreverente, sino en cambiar la idea que tenemos sobre cómo funciona la naturaleza.

Sin embargo, el experimento de Hanson aún no ha convencido a todos. Como Hanson se ha ocupado de recalcarme, y con toda la razón, ninguna de las críticas presenta objeción a su diseño experimental ni a sus resultados; todos los físicos a los que consulté los consideran impecables. Pero de cara a su interpretación, hay quienes piensan que aún queda una grieta por tapar antes de asegurar que no queda ninguna posible gotera. La explicación, mañana.