Archivo de la categoría ‘Biología’

Uno de cada 500 hombres tiene un cromosoma sexual de más (X o Y)… y no lo sabe

No sé qué opinaría Clint Eastwood de que su imagen se haya convertido en un frecuente avatar de los sectores ultraconservadores en internet. Teniendo en cuenta que él es pacifista, defensor del control de las armas, del derecho al aborto y a la eutanasia, de la igualdad de las mujeres y del matrimonio igualitario, y que además no es creyente, posiblemente le parecería cuando menos chocante. Pero como es libertario y además parece un buen tipo, quizá diría simplemente aquello de Clark Gable al final de Lo que el viento se llevó: «Frankly, my dear, I don’t give a damn».

El motivo para traer aquí al bueno de Clint es por ser un ejemplo de cómo en ocasiones en la mente de las personas se sustituye algo por una caricatura de ese algo, un cliché prefabricado que en absoluto se corresponde con la realidad; por ejemplo, un personaje del actor. El resultado final es que se está utilizando la imagen de una persona para sostener ideas que esa persona jamás defendería. Luego, además, otros copian e imitan este meme (en su sentido original) perpetuando el error, como ocurre con esa ingente cantidad de citas falsas que circulan en internet y que sus presuntos autores jamás dijeron ni escribieron: lo del «ladran, luego cabalgamos» del Quijote, lo de Einstein sobre que la estupidez humana es infinita, lo de Bertolt Brecht de que primero vinieron a por los comunistas…

Y llego ya a lo que voy: quizá cuando alguien esgrime el nombre de la ciencia para negar la realidad de las personas trans, intersexuales y no binarias, para afirmar que según la biología solo hay dos clases de personas, hombres XY y mujeres XX, y que según la ciencia tener pene o vulva son condiciones necesarias y suficientes para ser niño o niña, respectivamente, quienes sí conocemos la ciencia y sabemos la enorme falacia que están propagando deberíamos simplemente don’t give a damn.

Pero si no podemos hacer esto es porque en este caso hay personas que resultan dañadas, excluidas, ridiculizadas y estigmatizadas por algo que, sencillamente, es mentira; por algo dicho por quienes esgrimen la ciencia por una vez en su vida ignorando por completo qué es o qué dice la ciencia, con una caricatura de la ciencia que no se corresponde en absoluto con la realidad, sino solo, si acaso, con un conocimiento científico de nivel EGB de hace cincuenta años.

La bandera arco iris. Imagen de Piqsels.

Ignoro por completo qué dice la nueva llamada ley trans en España; no la he leído ni pienso hacerlo, porque las leyes no son lo mío. No tengo el criterio jurídico o legal para opinar (y no soy el único, aunque quizá otros no lo admitan públicamente). Pero leí hace unos días un (otro más) comentario en Twitter de un periodista conservador opinando alegremente al respecto que el no binarismo, la transexualidad y el género son un invento ideológico de moda contrario a la ciencia. Y de esto sí sé: miren, ni puñeterísima idea.

No voy a extenderme hoy en explicar qué es realmente lo que dice la ciencia actual sobre esto. He hablado de ello aquí varias veces, la última hace unos meses. Quizá aún deba aquí una explicación más larga y detallada, pero si alguien está realmente interesado en conocer la ciencia real actual al respecto, Scientific American tiene un ebook de 2018 titulado The New Science of Sex and Gender, una completa colección de ensayos de algunos de los principales especialistas en los enfoques médico, biológico y psicológico sobre los muy complejos mosaicos genotípicos, epigenéticos y fenotípicos del sexo, la orientación sexual y la identidad de género.

Pero en estos días estamos celebrando la diversidad, la aspiración (todavía no la realidad, como demuestran comentarios como el citado) de que las personas pertenecientes a esas minorías puedan disfrutar de ser lo que son y expresarlo libremente sin negárselo a sí mismas, sin pensar que son un error o que están enfermas o que deberían forzarse a no ser ellas mismas, sin que nadie las rechace o se mofe de ellas; y sobre todo, sin pensar que tienen a la ciencia en contra, porque es justo lo contrario. En resumen, la aspiración de que puedan vivir su vida exactamente igual que quienes pertenecemos a la mayoría.

Y para traer aquí algo nuevo, me ha venido al pelo un nuevo estudio dirigido por las universidades de Cambridge y Exeter y publicado en Genetics in Medicine. Los autores han buceado en el UK Biobank, una base de datos genómica y de salud de la población británica que está resultando un filón científico para infinidad de estudios, y han reunido los datos de genomas de más de 207.000 hombres británicos de ascendencia europea, con el fin de estudiar la presencia de cromosomas sexuales extra, X o Y.

Estas condiciones son conocidas desde que se conocen los cromosomas humanos (o incluso antes). Tanto las personas con 47, XXY como las 47, XYY, es decir, que tienen un cromosoma Y y un cromosoma sexual de más, tienen genitales masculinos y son asignadas a este sexo al nacer. Las primeras, 47, XXY, suelen detectarse con cierta frecuencia, sobre todo en la pubertad, porque padecen una serie de síntomas que se conocen como síndrome de Klinefelter y que incluyen rasgos como poco vello, crecimiento de los pechos, testículos poco desarrollados, problemas de fertilidad y otros de coordinación motora y a veces de aprendizaje. Pero la visibilidad de los síntomas varía, y en muchos casos son tan sutiles que no llega a detectarse. En el caso de las personas 47, XYY, los síntomas pueden ser mucho menos aparentes y no se ve afectada su fertilidad, aunque pueden presentar ciertos problemas motores y de aprendizaje.

Lo que han descubierto los investigadores es que la presencia de un cromosoma sexual extra en los hombres es mucho más frecuente de lo que se creía: un 0,17%, o 1 de cada 580, si bien sospechan que probablemente el porcentaje real sea algo mayor, de un 0,2% o 1 de cada 500, ya que los voluntarios del UK Biobank tienen unos parámetros de salud superiores a los de la población general y menor incidencia de condiciones genéticas.

Lo más curioso es que la mayoría no tenían la menor idea de su cromosoma sexual extra: un 23% de los XXY lo sabían, pero solo un 0,7% de los XYY estaban enterados de ello.

Relacionando estos datos con los de salud, los investigadores han detectado que las personas de estos grupos podrían tener un riesgo algo más elevado de sufrir ciertas dolencias, como diabetes de tipo 2, aterosclerosis, trombosis, embolia pulmonar o enfermedad pulmonar obstructiva crónica. Por lo tanto, la detección de la presencia de estos cromosomas extra puede servir para poner sobre aviso con respecto al riesgo de desarrollar enfermedades vasculares, metabólicas o respiratorias.

En fin, esto es solo una pequeña muestra más de lo diversos que somos los humanos, frente a quienes piensan que solo existen hombres XY y mujeres XX, y que todo lo demás es ideología. Y es inevitable pensar que, dada la frecuencia descubierta por los autores, es probable que alguno de quienes piensan así tenga un cromosoma sexual de más sin saberlo. Lo cual sería una fina ironía del azar genético.

¿Existe realmente un brote de hepatitis aguda grave infantil?

Uno de los aspectos en los que la COVID-19 ha cambiado el mundo es en que ahora los medios y el público prestan mucha más atención a las enfermedades infecciosas y a los presuntos brotes epidémicos extraños. Por ejemplo, las 6.300 muertes por gripe en España en la temporada 2018-2019, la última completa anterior a la pandemia, no parecían importar a casi nadie. Por ejemplo, los brotes de otros coronavirus previos al SARS-CoV-2, que también han causado sus cuotas de muertes, sobre todo cuando se han producido brotes en residencias de ancianos, eran tan desconocidos para la gente que incluso se encuentran por ahí graciosas conspiranoias de quienes ignoraban por completo la existencia de estos virus.

Por ejemplo, en este blog he seguido durante años los nuevos descubrimientos en torno al virus de Lloviu, ese pariente del ébola descubierto en una cueva asturiana, que durante años ha pasado inadvertido para el público. Hace algo más de un mes me escribía Félix González, codescubridor de los murciélagos en los que se halló el virus, alarmado porque de repente en un mismo día le habían llovido las llamadas de varios medios para preguntarle por ello. Y realmente no había ninguna noticia, nada nuevo; al parecer, alguien en un medio de gran difusión de repente descubrió que existía este virus (existe oficialmente para la ciencia desde 2011) y pensó que en estos momentos de histeria infecciosa era un buen reclamo para conseguir clicks.

Es por ello que algunos de quienes hemos estado profesionalmente involucrados en este campo reaccionamos con bastante escepticismo ante la oleada inicial de alarma desbocada sobre el SARS-CoV-2, a comienzos de 2020. Y sí, en este caso nos equivocamos. Pero en el extremo contrario, también es cierto que ahora cualquier pequeña posible alarma sanitaria es un imán de clicks, y los medios no van a resistirse a este caramelo. Por ello, probablemente en estos tiempos sería conveniente que el público leyera los titulares grandilocuentes sobre nuevas epidemias, brotes o infecciones con una ceja levantada. Sobre todo cuando incluso las propias fuentes sanitarias pueden propiciar alarmas sin una confirmación sólida.

Imagen de Pixabay.

Un posible caso de esto, aunque todavía confuso, es el supuesto brote de una hepatitis aguda grave en niños que se detectó en varios países europeos, incluyendo España, y en EEUU. El pasado abril, cuando estas alarmas saltaron, traté aquí este tema con las hipótesis que se estaban barajando, por separado o combinadas: una rara complicación o secuela de la COVID-19, un adenovirus, o incluso una reacción inmunitaria errónea o autoinmunitaria alimentada por un descenso de estimulación antigénica durante la pandemia. Un posible efecto secundario de las vacunas de la cóvid se descartó desde el primer momento, ya que los niños afectados no estaban vacunados.

Ahora, he aquí el plot twist: nuevos estudios en Europa y EEUU dicen que quizá no exista tal brote; los datos presentados indican que la incidencia de hepatitis aguda grave en niños se mantiene en los mismos niveles de antes.

El estudio europeo se ha publicado en Eurosurveillance, revista del Centro Europeo para el Control de Enfermedades (eCDC). Los autores han recabado datos de 34 centros de 22 países europeos e Israel (en España, de Madrid y Barcelona) que forman parte de la red de referencia europea de enfermedades hepáticas y que tratan a niños con hepatitis, entre el 1 de enero y el 26 de abril de 2022.

De los 34 centros, 22 dijeron que no han observado un aumento de niños con hepatitis grave. Los 12 restantes informaron de una sospecha de aumento de casos, pero lo cierto es que sus cifras no lo reflejaban. El número de trasplantes pediátricos de hígado en los centros consultados ha sido menor en los meses analizados de 2022 que en años anteriores: una media de 2,5 en 2022 frente a 4,9 en 2021, 3,7 en 2020 y 4,9 en 2019, con la salvedad de que en 2022 solo se incluyen los casos de 4 meses y no del año completo.

La conclusión de los investigadores: «En comparación con la media de casos en cada año completo previo de 2019-21, no hay un incremento absoluto de casos con los criterios considerados en el periodo de estudio, basado en los datos de los centros participantes. Sin embargo, los datos de 2022 comprenden solo los primeros 3,8 meses del año y deberían considerarse preliminares». Otro dato aportado por los autores es que en la mayoría de los niños no se detectó adenovirus, una de las posibles causas que se habían apuntado, ni ningún otro virus en particular.

Sin embargo y como subrayan los investigadores, los datos deben tomarse con precaución, ya que son incompletos: en el estudio solo se incluyeron centros especializados, no hospitales generalistas. En Nature la hepatóloga pediátrica de la Universidad de Birmingham (Reino Unido) Deidre Kelly, coautora de este estudio, afirma que el número de casos que ella ha visto este año ha sido anormalmente alto; este estudio europeo no incluye datos de Reino Unido. Y lo cierto es que en aquel país sí se ha observado un aumento de casos respecto a años anteriores.

Conclusiones parecidas, aunque distinto método, tiene el estudio estadounidense, publicado en Morbidity and Mortality Weekly Report, la revista del CDC de EEUU. En este caso los investigadores han reunido los datos sobre hepatitis aguda, inflamación hepática o trasplantes de hígado en niños en las consultas de Urgencias y hospitalizaciones, comparando el periodo de octubre de 2021 a marzo de 2022 con un intervalo desde 2017 anterior a la pandemia, para evitar posibles sesgos durante los peores tiempos de la COVID-19. Además, también han recolectado los datos sobre positividad a adenovirus.

La conclusión: «Los datos actuales no sugieren un incremento en hepatitis pediátricas o adenovirus de tipos 40/41 por encima de los niveles de base pre-pandemia de COVID-19». Pero como en el estudio europeo, los autores advierten de que son datos preliminares e incompletos, y que por lo tanto aún no puede llegarse a una conclusión definitiva.

En resumen, todavía no hay respuestas firmes. Pero lo que sin duda ahora sí hay es una duda que antes no existía, cuando se daba por hecho que estábamos ante una nueva y misteriosa pequeña epidemia.

Por mi parte, ya lancé aquí mi apuesta: durante la pandemia muchas personas, ante un miedo perfectamente comprensible, han tratando de encerrarse en una burbuja inmunitaria minimizando todo tipo de contacto con el entorno; muchos padres han actuado así con sus hijos, con el propósito de protegerlos al máximo (aunque en muchos casos cayendo en el error de tratar de sustituir así a la vacunación, que es la mejor protección, según toda la ciencia disponible). Pero un sistema inmune sano necesita un contacto sano con los antígenos del entorno. Y una carencia de este contacto puede dar lugar a reacciones inmunitarias erróneas o descontroladas, especialmente en los niños, cuyo sistema inmune está en proceso de maduración y necesita esos estímulos para madurar.

Curiosamente, el estudio europeo de Eurosurveillance aporta una pista en esta dirección: recuerda que en 1923, después de la gran pandemia de gripe de 1918, se registraron numerosos casos de hepatitis grave con síntomas abdominales que sugerían un virus gastrointestinal. «Se consideró entonces que estaba relacionado con la susceptibilidad a virus a los que la gente no había estado expuesta durante la contención social», escriben los autores, añadiendo que en este caso podríamos estar ante «una interacción entre el sistema inmune inmaduro o inexperto y el hígado», en el contexto de alguna posible infección viral.

Por último, en Nature la hepatóloga Deidre Kelly apunta la posibilidad de que, con independencia de cuáles sean las causas primarias, quizá estos casos de hepatitis infantil estén delatando la existencia de ciertos factores de riesgo en algunos niños que antes no se conocían. Y que tal vez este brote, si lo es, pueda ayudar a identificarlos, lo que serviría para prevenir futuros casos. Por el momento, todas las hipótesis siguen abiertas.

El cambio climático, explicado de forma sencilla (o eso espero)

Como prometí ayer, hoy toca traer aquí una explicación del cambio climático que pretende detallar un poco mejor las causas, lo que muy a menudo se deja de lado en favor de los efectos. Primero, un par de disclaimers: aunque voy a explicarlo de forma sencilla, o eso espero, esto no van a ser dos minutos, o cinco párrafos; para una explicación algo detallada se requiere un poco más. Y segundo, pido perdón también por alguna sobresimplificación inevitable que solo busca precisamente eso, tratar de simplificarlo.

Los planetas duros como la Tierra o Venus se componen básicamente de dos tipos de rocas, carbonatos y silicatos (simplificación, pero lo demás no nos interesa ahora). Básicamente, lo que hacen estos dos tipos de rocas es pasarse el oxígeno entre ellas. El oxígeno es, con mucha diferencia, el elemento más abundante de la corteza terrestre (el segundo de la Tierra en general). El silicio es el segundo. En cambio, el carbono es extremadamente minoritario, tanto que en la composición general de la Tierra parecería irrelevante. Pero no solo es la base de todos los seres vivos, sino que, como vamos a ver, su papel en la Tierra es esencial.

Los carbonatos son rocas que contienen carbono, oxígeno y algo más, como calcio, otro de los elementos más abundantes en la Tierra. Ejemplo: carbonato cálcico (CaCO3), la roca caliza. Los silicatos también contienen silicio, oxígeno y algo más. Ejemplo, los silicatos de aluminio que forman la arcilla.

Así, y como hemos dicho que los carbonatos y los silicatos se pasan el oxígeno entre sí (y algo más), esto da lugar a un ciclo, llamado ciclo de los carbonatos-silicatos. El ciclo funciona así: los volcanes expulsan rocas silíceas y CO2. Este gas que pasa a la atmósfera crea un efecto invernadero, es decir, atrapa el calor del sol, aumentando la temperatura de la biosfera (la capa sólida, líquida y gaseosa de la Tierra que habitamos los seres vivos). El mar se traga una parte del CO2 atmosférico, por lo que actúa como regulador del efecto invernadero. Además, la lluvia también abate una parte del CO2 a la tierra y al mar. Entonces ocurren dos cosas.

Por un lado, el agua y el CO2 causan un proceso en los silicatos llamado meteorización, por el cual los elementos como el calcio se liberan, pasan a los ríos y llegan al mar. El silicio puede entonces formar minerales como la sílice, o cuarzo, es decir, arena. Por otro lado, al mar llega también ese CO2 de la atmósfera que hemos dicho.

En los mares ocurre que el CO2 y el calcio son utilizados por los seres vivos; entre otras cosas, para formar los carbonatos que componen las conchas y otras estructuras duras no vivas (inorgánicas) de los seres vivos. Los seres vivos mueren y caen al fondo en los sedimentos marinos, formando rocas sedimentarias. También los depósitos de organismos muertos, cuando quedan atrapados antes de descomponerse del todo, forman las bolsas de hidrocarburos: carbón, petróleo y gas natural. En torno a un 80% de las rocas de carbono proceden de los carbonatos, mientras que el 20% restante tiene su origen en los organismos vivos. En general, estas rocas sedimentarias penetran en el interior de la Tierra, por ejemplo a través de los contactos entre placas tectónicas, y allí los procesos magmáticos las transforman en silicatos y CO2, que se expulsan a través de los volcanes. Y el ciclo comienza de nuevo.

Esto que sigue es una ilustración del ciclo, que puede ayudar a entenderlo o lo contrario, complicarlo más. No es imprescindible, pero queda bien, y de todos modos estoy obligado a incluir alguna imagen, así que allá va:

Ciclo de carbonatos-silicatos. Imagen de John Garrett / Wikipedia.

Este ciclo de los carbonatos-silicatos, que se mueve en una escala de millones de años, es fundamental en la regulación del clima terrestre. Un ejemplo de cómo se regula este equilibrio: si crece el CO2 en la atmósfera y con él la temperatura, aumenta la evaporación del agua. El vapor de agua tiene un potentísimo efecto invernadero, pero entonces también aumentan la lluvia y la meteorización, lo que retira CO2 del aire y enfría el planeta. Si baja el CO2 en la atmósfera, ocurre lo contrario. Es decir, este ciclo es un sistema de climatización regulado por termostato que en la Tierra ha funcionado estupendamente durante miles de millones de años. Gracias a él se han mantenido las condiciones habitables. Gracias a él estamos aquí.

Pero imaginemos que prendemos un buen fuego en el salón de casa. El termostato saltará y pondrá en marcha el aire acondicionado. Pero por mucho que se esfuerce, no conseguirá rebajar la temperatura, y continuará funcionando a máxima potencia hasta que acabe averiándose. Es decir, la capacidad de los sistemas de regulación de la temperatura no es infinita. Si se fuerza el sistema, acaba colapsando.

El ejemplo de esto lo tenemos en Venus. La Tierra y Venus nacieron como planetas casi gemelos, pero Venus acabó muy mal. El origen de su desastre posiblemente fue el calor del sol, que aumentó durante la infancia del Sistema Solar, elevando la temperatura de Venus. El efecto invernadero aumentó por el CO2 y el vapor de agua en la atmósfera, lo cual a su vez liberaba más CO2 y más vapor de agua que aumentaban el efecto invernadero. Este círculo vicioso llegó a un punto en que ya no fue posible retirar el CO2 necesario para enfriar la temperatura, sobre todo cuando el agua se iba perdiendo por disociación en oxígeno e hidrógeno, y este último escapaba al espacio. Así, el planeta se iba calentando cada vez más, y secándose hasta que las placas tectónicas dejaron de funcionar y el ciclo se detuvo por completo. Resultado: Venus se convirtió en un infierno, más caliente que Mercurio, que está mucho más cerca del Sol, y con una presión atmosférica aplastante, casi todo ello CO2.

Este efecto invernadero catastrófico que hizo de Venus lo que es hoy ocurrirá también en la Tierra al final de la vida del Sistema Solar, cuando el Sol se convierta en una estrella gigante roja. Pero debe quedar claro que esto no va a ocurrir aquí en millones de años. No, la acción humana no va a convertir a la Tierra en Venus. Lo que sí está ocurriendo es que la acción humana está alterando el ciclo lo suficiente como para que sus efectos se noten, y sean irreversibles en un plazo de muchas generaciones.

También conviene aclarar que las glaciaciones son procesos naturales en los que desempeña un papel importante la variación de la órbita terrestre a lo largo del tiempo. Estos ciclos, llamados de Milankovitch, se basan en la variación de ciertos parámetros orbitales a lo largo de periodos respectivos de 100.000 años, 413.000, 41.000 y 25.771,5 años. Los efectos de estos ciclos se superponen a la regulación propia del clima terrestre y a otros factores implicados en ciclos de realimentación, pero son también a largo plazo y no tienen ninguna relación con el cambio climático actual. Tampoco los ciclos solares; la intervención de los ciclos orbitales y solares en la evolución del clima actual a corto plazo fue muy discutida durante gran parte del siglo XX, sin que se llegara a encontrar un encaje entre estos factores y las observaciones, ni siquiera en los modelos predictivos.

Cuando utilizamos los combustibles fósiles, no se trata solo de que al quemarlos estamos emitiendo CO2 a la atmósfera, que por supuesto que sí. Es que además estamos arrebatándole al ciclo una buena parte de su reserva de carbono. En lugar de dejar que esos depósitos de carbono sigan su recorrido de millones de años en el interior de la Tierra, los estamos sacando de ahí para inyectarlos en una vía acelerada, el ciclo rápido del carbono, que es el que se produce entre los seres vivos y la biosfera. Así, le estamos sustrayendo material al ciclo de carbonatos-silicatos, y al hacerlo estamos forzando el termostato. Y el termostato no está preparado para absorber esta demanda extra: se calcula que el CO2 emitido por la quema de combustibles fósiles multiplica por 100 a 300 el expulsado por los volcanes en el ciclo natural de carbonatos-silicatos.

Pero ¿cuánto carbono supone esto, y es suficiente esta cantidad para alterar el clima terrestre? Recordemos que el carbono es un elemento extremadamente minoritario en la Tierra. Pero que, a pesar de ello, su papel en la regulación del clima es esencial. En una analogía biológica de la Tierra como un organismo, podríamos compararlo con las vitaminas, sustancias que necesitamos en muy poca cantidad, pero que son fundamentales para mantener el buen funcionamiento del cuerpo.

Y por lo tanto, esto ya da una idea de que incluso una pequeña alteración de carbono puede tener consecuencias graves, ya que quitar o añadir un poco a una cantidad pequeña tiene un efecto mucho mayor que quitar o añadir un poco a una cantidad grande. De esta pequeñísima cantidad del carbono terrestre, casi todo, el 99,6%, está secuestrado en las rocas del ciclo, y solo el 0,002% está en el ciclo de los seres vivos de la biosfera. Así que, si con esto alguien aún no entiende cómo es posible que solo un poco más de carbono en la atmósfera pueda tener consecuencias tan brutales en la regulación del clima, entonces ya no sé cómo explicarlo.

Los científicos comenzaron a sospechar de la importancia de estos procesos en el siglo XIX, con las aportaciones pioneras de nombres como Joseph Fourier, Eunice Foote, John Tyndall o Svante Arrhenius. Pero fue en 1958 cuando el científico atmosférico Charles David Keeling empezó a hacer algo que hasta entonces no se había hecho, medir de forma continua y homogénea los niveles de CO2 atmosférico en un lugar concreto, la cumbre del Mauna Loa en Hawái. Y aquellas mediciones, continuadas hasta hoy, han dado lugar a esta ya famosa curva:

Curva de Keeling. Concentración de CO2 en la atmósfera desde 1958 hasta hoy. Imagen de UC San Diego / Scripps.

Cuando Keeling comenzó sus observaciones, los científicos se preguntaban hasta qué punto el mar, pieza fundamental del termostato del ciclo de carbonatos-silicatos, podría absorber el exceso de CO2 emitido por la quema de combustibles fósiles. Ya por entonces los modelos matemáticos, mucho más simples que los disponibles hoy, indicaban que no. No solo el mar almacena carbono: la materia vegetal captura también inmensas cantidades de carbono (la fotosíntesis ya mencionada). Hoy los científicos calculan que la tierra y el mar pueden absorber hasta un 50% del CO2 emitido por la quema de combustibles; la otra mitad queda en la atmósfera alterando la regulación térmica terrestre.

Y no solo emitimos CO2 por la quema de combustibles fósiles (ni tampoco este es el único gas de efecto invernadero, pero se trata de no alejarnos de la explicación sencilla): la deforestación y el cambio en los usos de la tierra añaden más liberación de CO2 a la atmósfera. Y no olvidemos el cemento: el hormigón es el segundo material más consumido en el mundo después del agua. Para fabricar cemento calcinamos piedra caliza, carbonato cálcico (CaCO3), lo que genera óxido de calcio (CaO) y CO2. Es decir, que no solo mediante la extracción de combustibles fósiles estamos vaciando las reservas de carbono del ciclo de carbonatos-silicatos e inyectando ese carbono en el ciclo rápido, sino también a través de la conversión de roca caliza en cemento.

Es importante señalar que los modelos actuales, aunque siempre imperfectos, son mucho más avanzados que hace medio siglo. Gracias a estas simulaciones informatizadas es como los científicos han podido determinar cuáles son los llamados tipping points, algo así como puntos de no retorno, a partir de los cuales ciertos efectos sobre el clima se manifiestan sin posibilidad de reversión. Cuando en el acuerdo de París de 2015 se fijaron los objetivos de un calentamiento máximo por debajo de 2 °C, preferiblemente un máximo de 1,5 °C, estas cifras no son producto de una negociación. En este caso se habla de cuáles son esos tipping points definidos por la ciencia, esas fronteras que es imprescindible no sobrepasar.

Así se calcula con precisión cuál es nuestro presupuesto de carbono, el máximo que aún podemos emitir, o cuánto necesitamos eliminar, para ceñirnos a esos objetivos. Y de estos presupuestos, que tienen cifras concretas, es de donde nacen las medidas destinadas a reducir las emisiones. No son caprichosas ni arbitrarias, sino que están avaladas por mucha ciencia detrás. Y lo que dice esa ciencia es que no solamente no podemos seguir quemando combustibles fósiles, sino que además debemos dejar los que aún quedan donde están, si queremos mitigar en la medida de lo posible esa alteración del sistema regulador del clima terrestre.

Timos sobre dos grandes plagas del verano, el mosquito y la mosca negra

Si hace unos días hablábamos aquí de los mitos más populares sobre los mosquitos y las moscas negras, las dos plagas más molestas de nuestros veranos, hoy toca intercambiar las consonantes para hablar de los timos. En las tiendas físicas y online hay una nutrida oferta de productos destinados a repeler los insectos y protegernos de las picaduras. Y podríamos pensar que el hecho de que todos estos productos se comercialicen dentro de la legalidad es garantía de que funcionan; si se venden en Mercadona, ¿cómo van a ser un timo?

Pero sean cuales sean los requisitos que se exige a los fabricantes de los productos cuya función no se observa a simple vista —es decir, no es un martillo— para su aprobación, entre ellos no está el aportar pruebas de que hacen lo que dicen que hacen. No habría espacio aquí para otra cosa si tuviéramos que enumerar todos los casos en que esto no es así. Por mencionar solo uno, basta acordarnos de la Power Balance, aquella pulserita con la que muchos se hicieron de oro, y que incluso lució en su muñeca toda una ministra de Sanidad, hasta que por fin se creyó y entendió lo que decían los científicos: que aquel trozo de goma ayudaba tanto a mejorar el rendimiento físico como las pulseritas de la amistad. O incluso menos, ya que las pulseritas de la amistad pueden llegar a ser muy motivadoras según quién nos las regale.

En el caso de la Power Balance, como se recordará también, hubo muchas personas que dieron fe de que a ellas les funcionaba. Tampoco es este el momento para extendernos en explicaciones sobre el efecto placebo, el sesgo de confirmación o el cherry-picking de datos. Simplemente, y por si a alguien le interesa, van aquí algunas notas sobre qué productos o métodos hacen o no lo que se dice que hacen de una forma avalada por la ciencia.

Una aclaración antes de empezar: lo que sigue se refiere exclusivamente a los mosquitos. Por desgracia, el de la mosca negra es todavía casi un mundo por descubrir al que se le ha prestado poca atención.

Citronela: funciona como repelente en loción, pero no en velas ni en pulseras

Las velas de citronela son uno de los grandes best sellers contra los mosquitos en verano. Qué mejor: las velas hacen bonito, huelen bien… Todo perfecto, salvo que no sirven para repeler los mosquitos. No más que cualquier otra vela normal.

Vela de citronela. Imagen de Roger Ward / Flickr / CC.

La citronela de por sí tiene también todas las papeletas para atraer la atención de muchas personas, porque responde a ese equivocado mantra de los tiempos: ¡es natural! El aceite de citronela se extrae de plantas tropicales del género Cymbopogon, y se ha utilizado tradicionalmente en perfumería y para otros usos. Y, en efecto, es un repelente de insectos, aunque de menor duración que el DEET, el más eficaz conocido (y sintético).

En una comparación directa entre ambos, el aceite de citronela protege en un 98% en el momento de su aplicación, pero a las 2 horas ha descendido al 58%, mientras que el DEET mantiene más de un 90% de protección durante al menos 6 horas. El tiempo de protección completa, definido como lo que tarda el primer mosquito en atacar un brazo tratado con el repelente, fue de 10,5 minutos para la citronela y de al menos 6 horas para el DEET. Lo de «al menos 6 horas» significa que los investigadores detuvieron el experimento a las 6 horas, por lo que no llegaron a comprobar durante cuánto tiempo más el DEET podía seguir protegiendo por completo.

El motivo de que la protección por citronela dure tan poco tiempo es que es muy volátil, y se evapora de la piel. Según una revisión de los repelentes de insectos de extractos vegetales, las nuevas formulaciones buscan prolongar la protección. «Sin embargo, por el momento no se debería recomendar el uso de repelentes basados en citronela a los viajeros a zonas endémicas de enfermedades [transmitidas por insectos]», escribían los autores.

Todo lo anterior se refiere al uso de la citronela en repelentes líquidos para aplicar sobre la piel. La misma revisión repasaba los estudios previos sobre las velas de citronela: «Los estudios de campo contra poblaciones mezcladas de mosquitos muestran reducciones en las picaduras de en torno al 50%, sin ofrecer una protección significativa contra las picaduras de mosquito». En concreto, la reducción en las picaduras con velas de citronela fue similar a la de las velas normales, lo que los científicos atribuyen a que el humo tiene un cierto efecto ahuyentador. Es decir, que cualquier efecto que pueda observarse con las velas de citronela no se debe a que son de citronela, sino a que son velas. «Las velas de citronela no tienen ningún efecto», concluía otro estudio de 2017 que comparó diversos métodos.

En cuanto a las pulseras, un estudio encontró cierto efecto protector para las impregnadas con DEET, una reducción de las picaduras en torno al 30%, pero solo en el propio brazo que llevaba la pulsera, no en todo el cuerpo. «Los sujetos en este estudio fueron picados con frecuencia en las zonas expuestas de la cabeza y el cuello, lo que sugiere que el efecto repelente se limita a las áreas próximas a la pulsera tratada, del mismo modo que la aplicación tópica de DEET en un área expuesta de la piel generalmente no protege las áreas sin tratar», escribían los investigadores. Puede imaginarse que las pulseras con citronela seguramente protejan la parte de la muñeca que está tapada por la pulsera, y quizá algo el resto del brazo. Pero para el resto del cuerpo, nada de nada.

Repelentes ultrasónicos: naaah…

No, los repelentes ultrasónicos no sirven para nada. Y sí, probablemente existan en Amazon reseñas de usuarios que afirmen lo contrario. Un ejemplo del porqué de esto podemos encontrarlo en Wayne Schmidt, un ingeniero y físico estadounidense retirado que, entre otras mil cosas, en su web habla de su lucha contra la plaga de hormigas en su casa. Colocó un repelente ultrasónico primero en el baño, luego en la cocina, y en favor de Wayne hay que decir que se tomó el experimento muy a pecho: contando hormigas durante varios días antes de colocar el aparato, luego lo mismo con el cacharro, y de nuevo otra vez después de quitarlo. Según los resultados, Wayne concluía que el repelente ultrasónico no eliminaba la presencia de hormigas, pero sí la reducía considerablemente. Entusiasmado, compró otros tres aparatos más.

Hasta que las hormigas llegaron a su dormitorio, y de nuevo colocó el repelente allí. Y, esta vez, nada de nada: el mismo número de hormigas con el cacharro que sin él. «No tengo explicación para esto», admitía Wayne. Pero su experiencia tiene un nombre clásico: amimefuncionismo. O sesgo de confirmación, variables de confusión, cherry-picking de datos… El caso es que, si Wayne no hubiese probado los repelentes en el dormitorio, habría defendido a capa y espada que funcionaban. Y quizá incluso escribió alguna reseña positiva del producto, aunque esto no lo aclara. Pero un aparato que funciona en la cocina, y no en el dormitorio, es un aparato que no funciona.

Frente al amimefuncionismo, tenemos la ciencia. La base de datos de Cochrane es la regla de oro de los metaestudios, o estudios que reúnen todos los estudios previos válidos sobre una cuestión. Allí los investigadores publican revisiones rigurosas que recopilan esos estudios previos, no siempre coincidentes en sus resultados, para extraer conclusiones estadísticamente válidas que se consideran la mejor ciencia disponible sobre la materia. En 2007 un grupo de científicos reunió y analizó los estudios existentes, en este caso 10, sobre la eficacia de los repelentes ultrasónicos contra los mosquitos.

Y esta es la conclusión: «Todos los 10 estudios encontraron que no hubo diferencias en el número de mosquitos capturados de las partes del cuerpo expuestas de los participantes con o sin repelentes electrónicos de mosquitos». «Los repelentes electrónicos de mosquitos no tienen ningún efecto en la prevención de las picaduras de mosquito. Por lo tanto, no hay ninguna justificación para comercializarlos para prevenir infecciones de malaria». Hay incluso un par de estudios que encontraron que el mosquito tigre y el de la fiebre amarilla pican más con los repelentes ultrasónicos.

Y por supuesto, lo dicho para los repelentes ultrasónicos también se aplica a las apps para el móvil que circulan por ahí bajo proclamas de repeler y ahuyentar a los mosquitos; incluso hay emisoras de radio que se han apuntado a este negocio. Nuevos medios, pero los timos son los mismos que en la época de Pajares y Esteso. Según el estudio de 2017 citado arriba, los repelentes ultrasónicos de mosquitos son «el equivalente moderno del aceite de serpiente», una expresión que en inglés se usa para designar los remedios fraudulentos.

Colocar plantas en la ventana: pfffffff…

No, no hay ninguna planta que colocada en una ventana o en cualquier otro lugar vaya a impedir la entrada de insectos voladores chupadores de sangre ni a protegernos de sus picaduras. Como suele decirse, no funciona así. Según lo visto con la citronela, ciertas plantas tienen compuestos químicos repelentes de insectos, y dichos extractos (o en algunos casos incluso hojas machacadas, como en el caso de la albahaca) aplicados sobre la piel pueden otorgar cierta protección. Pero pensar que una planta colocada en un poyete va a protegernos o a ahuyentar a los mosquitos es como creer que un antibiótico nos va a curar solo por llevarlo en el bolsillo. De hecho, el estudio mencionado más arriba sobre las pulseras de DEET también probó el uso de plantas supuestamente repelentes. El resultado: «Los voluntarios rodeados por plantas repelentes de mosquitos de hecho tuvieron más ataques de mosquitos que los controles».

Por último, no quisiera terminar sin advertir de esto: dado que para un consumidor medio no es posible saber si un producto de este tipo en los estantes del súper hace lo que sus fabricantes dicen que hace, lo que nunca debe hacerse es utilizarlos de forma distinta a sus indicaciones, ni tampoco caer en la tentación de fabricar nuestros propios remedios. Por ejemplo, el aceite esencial de albahaca (aceites esenciales son los que se extraen de las plantas por destilación) contiene metil eugenol (para los quimiófobos, 1,2-dimetoxi-4-(prop-2-eno-1-il)benceno), un compuesto clasificado en el grupo 2B de la Agencia Internacional de Investigación del Cáncer, el organismo encargado de catalogar los factores de riesgo de cáncer. Los pertenecientes al grupo 2B son «posiblemente carcinogénicos».

O sea, que el aceite esencial de albahaca contiene un compuesto, encontrado también en otros aceites esenciales de plantas, sospechoso de provocar cáncer. Según una revisión de 2017 sobre la composición de los aceites esenciales de distintas variedades de albahaca, «todas las variedades estudiadas, excepto la Lettuce Leaf, son ricas en metil eugenol, con una fuerte dependencia de la proporción de eugenol a metil eugenol en los cambios estacionales (sobre todo la radiación solar, pero también la temperatura y la humedad relativa)». Es por esto que la Unión Europea regula los productos que llevan más de 0,01% de metil eugenol.

Lo que esto no quiere decir es que la albahaca sea peligrosa. Lo que sí quiere decir es que el aceite esencial de la albahaca, como cualquier otra sustancia, debe usarse como se dice que debe usarse y para lo que se dice que debe usarse. Sea natural o no; el ácido clorhídrico también es natural, como lo son los más potentes venenos conocidos. Y lo que también quiere decir es que, aunque pueden encontrarse por ahí webs que le animan a uno mismo a hacerse sus propios preparados, de verdad, es mejor dejar los experimentos para quien sabe lo que está haciendo.

Todo esto es lo que dice la ciencia. O sea, lo que concluyen los experimentos de quienes realmente han puesto a prueba estos productos. Como concluía el estudio de 2017 citado arriba, «se hace evidente que no todos los repelentes y/o dispositivos repelentes reducen realmente la atracción por los mosquitos, y que en muchos casos las proclamas de los vendedores de estos productos son exageradas o simplemente falsas». Ahora habría que preguntar a quien corresponda: ¿por qué se permite que estos productos se vendan?

Mitos sobre dos grandes plagas del verano, el mosquito y la mosca negra

Desgraciadamente, en los dos últimos años la palabra «plaga» se ha convertido en algo muy diferente de lo que solíamos entender antes. Pero el mundo sigue girando, vuelve el verano, y con él lo que en otro tiempo solíamos llamar plagas típicas de la estación. El mosquito no necesita presentación, pero sí la mosca negra, la gran desconocida, un insecto (en realidad son más de 2.200 especies distintas) sobre el que he hablado aquí anteriormente y que cuenta con la ventaja de ser ignorado por la mayoría de los humanos a los que chupa la sangre. Los cuales, teniendo que buscar un culpable, suelen cargarle este mochuelo a las pobres arañas, que normalmente no suelen tener ninguna culpa en esa abultada picadura del brazo o de la pierna.

La mosca negra, un díptero de la familia de los simúlidos, es este animalito:

Una mosca negra (simúlido). Imagen de Fritz Geller-Grimm / Wikipedia.

Una mosca negra (simúlido). Imagen de Fritz Geller-Grimm / Wikipedia.

Por describirla someramente, es una mosca de tamaño mucho menor que las normales, con un perfil algo chepudo y que suele picar al amanecer y al atardecer, en zonas cercanas a las corrientes de agua donde crían. En mi larga experiencia personal como sufridor de las picaduras de la mosca negra, aunque sin pretender extender ninguna de estas observaciones más allá de mi propia experiencia personal, pican en exteriores, pero no suelen entrar en casa; pican más a unas personas que a otras (como los mosquitos), y sobre todo en la parte posterior de las piernas, aunque quizá sea simplemente que es ahí donde pasan más inadvertidas hasta que ya es tarde.

Suele decirse que la picadura de la mosca negra no se siente, y que es así porque inyecta un anestésico local al picar. Con lo primero no estoy muy de acuerdo, aunque una vez más es solo mi experiencia personal; la picadura sí se siente, como una ligera punzada, pero es posible que esto dependa de la sensibilidad de cada cual. Lo que sí es cierto es que algún estudio ha analizado la saliva de los simúlidos y ha encontrado muchos componentes distintos, pero ninguno de ellos con efecto anestésico; se ha apuntado que probablemente no sea algo que actúe sobre las terminaciones nerviosas, sino que quizá haya alguna enzima capaz de degradar los mensajeros químicos encargados de activarlas para transmitir la sensación de dolor.

Estrictamente, la mosca negra muerde más que picar. Si el mosquito es un tirador de precisión, hincando su estilete para chupar, a la mosca negra le va más el estilo slasher: primero nos estira la piel con unos dientes especiales y luego corta con sus mandíbulas para beber la sangre que brota. Para ello se ayuda, y de esto sí hay pruebas, de unos compuestos en su saliva con acción vasodilatadora y anticoagulante. Lo peor de la mordedura de la mosca negra llega al cabo de las horas. Las heridas suelen inflamarse, escocer y doler incluso durante días, y a veces dejan cicatrices permanentes.

Pero más allá de esto, a la afirmación que a menudo se lee por ahí de que las moscas negras pueden transmitir enfermedades, hay que decir que en nuestras latitudes esto es lo que suele llamarse un asustaviejas, con todo el respeto a las señoras de edad. Sí, en África y la América tropical los simúlidos transmiten la oncocercosis o ceguera de los ríos, una enfermedad provocada por un minúsculo gusano nematodo. Pero en nuestras latitudes no existe este parásito, y por lo tanto advertir sobre esto en España es alarmismo innecesario. Por otra parte, y que yo sepa, no se ha documentado la transmisión de ningún virus en humanos por la mosca negra.

Conviene recordar que las enfermedades transmitidas por un vector no solo necesitan que esté presente el vector, sino también el microorganismo responsable de la enfermedad. En España, como en la mayor parte de Europa, está extendido el mosquito Anopheles atroparvus, una de las especies de Anopheles transmisoras de la malaria. Pero no hay malaria porque el parásito no está presente; en España la enfermedad se consideró erradicada en 1964.

Ocasionalmente se registran casos de malaria y otras enfermedades tropicales transmitidas por vectores en Europa, cuando se da la carambola de que una infección importada sea recogida por un vector propicio y transmitida a otros. Por desgracia, los científicos llevan años advirtiendo de que el calentamiento global está ampliando la franja de las enfermedades tropicales hacia las zonas templadas. Y según los modelos, España y el sur de Europa en general sufren el mayor riesgo de padecer un aumento de casos de malaria y otras enfermedades tropicales a causa del cambio climático.

Esta aclaración da pie a lo prometido en el título: he aquí la realidad sobre algunos mitos relativos a estos pequeños vampiros veraniegos, comenzando por lo ya dicho para que no quede duda.

¿Puede la mosca negra contagiarnos una enfermedad?

En España, no; la mosca negra no transmite ninguna enfermedad. En países tropicales transmite la oncocercosis o ceguera de los ríos, pero este parásito no existe en España. Por otra parte, la mosca negra puede actuar como vector de transmisión del Virus de la Estomatitis Vesicular, una infección del ganado que puede afectar (levemente) a humanos, pero (que yo sepa) no existe un solo caso documentado de transmisión de ningún virus a humanos por la mosca negra.

¿Transmiten enfermedades los mosquitos en España?

En general los mosquitos no transmiten enfermedades en España, salvo de forma muy esporádica por algún caso importado. Tenemos al menos 64 especies de mosquitos, la mayoría nativas, algunas invasoras como el mosquito tigre (Aedes albopictus) o el Aedes aegypti, vector de la fiebre amarilla. En España se han registrado hasta 14 especies de Anopheles, los mosquitos transmisores de la malaria. Pero incluso los más comunes, del género Culex, también son vectores de enfermedades que hoy no tenemos, pero que podrían aumentar con el calentamiento global. Esto debería servirnos de aviso sobre las posibles consecuencias del cambio climático.

¿Es cierto que los mosquitos pican más a unas personas que a otras?

Sí, los mosquitos pican más a unas personas que a otras (posiblemente también las moscas negras). Tradicionalmente se hablaba de la sangre más dulce, lo que no tiene ningún sentido, ya que los mosquitos no son golosos; las hembras necesitan proteínas de nuestra sangre para incubar los huevos.

Los investigadores trabajan con la hipótesis de que algunos de los compuestos de la superficie de nuestra piel, llamados compuestos orgánicos volátiles (VOCs, en inglés), y de los que se han identificado más de 500, atraen a los mosquitos, y por lo tanto más en las personas que más los producen. Un estudio de 2020 encontró que los mosquitos parecen sentirse más atraídos por compuestos naturales presentes en la piel como el 5-etil-1,2,3,4-tetrahidronaftaleno, el α,α-dimetilbenceno metanol, el 2,6,10,14-tetrametilhexadecano o el ácido γ-oxobenzobutanoico, entre otros (y el único motivo para poner aquí los nombres de estos compuestos naturales es para, una vez más, desmontar esa clásica imbecilidad de la quimiofobia sobre los nombres difíciles de pronunciar).

Los atrayentes químicos de la piel son solo una de las pistas que utilizan los mosquitos para llegar hasta nosotros. Aunque aún no es un caso cerrado, en los últimos años se ha avanzado bastante en la comprensión de cómo hacen para localizar a sus presas. Primero, a larga distancia, entre 10 y 50 metros, localizan el CO2 de la respiración. Al acercarse a nosotros, entre 5 y 10 metros de distancia ya pueden vernos, pero solo somos un bulto más como muchos otros. Cuando se aproximan aún más para examinar los distintos bultos que han observado, a unos 20 centímetros detectan nuestro calor. Entonces se olvidan del CO2 y siguen el rastro de la humedad de la piel y de los compuestos que producimos que son atrayentes para ellos. A unos 3 centímetros, todas las pistas les confirman que somos su presa.

¿Es preferible vestir de algún color para evitar las picaduras?

Suele hablarse mucho de los colores que atraen o no a los mosquitos. De toda la vida se decía que les atrae la ropa clara, sobre todo el amarillo. Como viajero frecuente a África, allí he escuchado que se fijan más en la ropa oscura. Todo esto podría tener sentido como una adaptación a los colores de piel predominantes en distintas regiones del mundo. Pero un estudio reciente revela pistas más concretas: el Aedes aegypti, el mosquito que transmite la fiebre amarilla, el dengue, el zika y otras enfermedades —y que también está presente en España—, después de detectar el CO2 (y solo si lo detecta) vuela hacia ciertos colores, sobre todo el rojo y el naranja, junto con negro y cian, mientras que ignora el verde, el morado, el azul y el blanco.

Según escriben los investigadores, todos los humanos, desde las pieles más claras a las más oscuras, emitimos rojo, y este color atrae con preferencia a los mosquitos. De hecho, no encontraron preferencia por un tono concreto de piel, pero sí de cualquier tono de piel respecto a un control.

Entonces, ¿es preferible vestir de verde o azul? Bueno, quizá no sea tan sencillo. Los investigadores estudiaron también las preferencias de otras dos especies: Anopheles Stephensi, una especie sobre todo asiática, prefiere la misma gama de colores que Aedes aegypti, pero más el negro que el rojo. En cambio, Culex quinquefasciatus, que suele picar a los animales, mostraba más interés por el violeta, el azul y el rojo.

¿Pican solo de noche?

Este es otro mito que se cae. Ya se sabe que ciertas especies pican sobre todo de día o en las horas en que el sol está bajo, incluyendo el mosquito tigre o el Aedes aegypti. Pero también hay una dependencia de los colores: un estudio de 2020 descubrió que los picadores de día se ven atraídos por la luz durante el día, mientras que los picadores de noche durante el día huyen del azul, el violeta y el ultravioleta. Para complicar aún más las cosas, otro estudio reciente ha descubierto que casi la tercera parte de las picaduras de los mosquitos de la malaria en interiores se producen de día, cuando siempre se ha creído que estos eran solo nocturnos. Una razón de más para tomar precauciones para quienes viajen a zonas endémicas de malaria.

Hasta aquí, los mitos. Pero ¿qué hay de esas velas antimosquitos? ¿Y las pulseras? ¿Y los repelentes ultrasónicos? ¿Y las apps? ¿Es cierto que poniendo tal planta en la ventana se evita que entren en casa? Mañana pasaremos de los mitos a los… timos, que también los hay.

No, ningún alimento con moho debe comerse

A veces ocurren cosas bastante extrañas en el ecosistema informativo/desinformativo. Escucho hace unos días en un programa de radio que la Organización de Consumidores y Usuarios (OCU) ha dicho que los alimentos con moho deben tirarse a la basura, excepto tres, a los que basta con quitarles la parte afectada con un margen generoso: los embutidos curados, el queso compacto y los vegetales duros como la zanahoria. Lo más sorprendente del caso, que podría llamarse anecdótico si no fuera porque revela el conocimiento de la propia fuente de origen del consejo sobre aquello acerca de lo cual está aconsejando, es cuando en un corte de audio un portavoz de la OCU habla, literalmente, de «las bacterias que producen el moho».

A favor del programa de radio en cuestión (Julia en la Onda, en Onda Cero) hay que decir que desmintieron este consejo desaconsejable. Pero si he comenzado calificando el caso como extraño es porque, buscando en internet, encuentro que la OCU publicó esta información en su web allá por diciembre de 2019, y que ya entonces algunos medios hablaron de ello. Por motivos que no alcanzo a entender, ha ido resurgiendo en los medios periódicamente desde entonces.

Por lo que veo (y seguro que se me escapan muchos eslabones de esta cadena), en agosto de 2021 la OCU tuiteó su artículo de 2019. Y entonces algunos medios volvieron a rebotarlo. Como muestra del extraño recorrido y tratamiento de esta noticia, el diario El Correo lo contaba en su web, citando palabras de un experto al que se describe como «responsable de Bioensayos del Centro Nacional de Tecnología y Seguridad Alimentaria» (un centro tecnológico privado), pero cuyo nombre no aparece en el artículo. A favor de este experto anónimo hay que decir que él o ella no anima a nadie a consumir alimentos con moho. Tampoco lo contrario. Porque, sencillamente, esto no se le pregunta.

Más extrañamente, la misma información continúa goteando en diversos medios, en noviembre de 2021, en enero de 2022… El pasado enero Business Insider (BI) lo publicaba de nuevo, enlazando al artículo de la OCU de 2019, y sin contrastar lo afirmado por esta organización con ningún experto. Aunque BI tiene una reputación discutida, sobre todo por acusaciones de titulares clickbait, hay que decir que en su versión original en inglés suele publicar artículos de ciencia bien construidos y documentados, algo que contrasta con el caso que nos ocupa.

Y, como el monstruo del lago Ness, esta afirmación de la OCU resurge de nuevo en mayo de 2022, lo que supongo habrá motivado su mención en el programa de Onda Cero. Pero la continua reaparición de este consejo obliga a dejar constancia, al menos para cualquier usuario curioso que decida hacer algo de googleo antes de creerse sin más todo lo que escucha o lee, de que no: no es aconsejable consumir ningún alimento con moho.

Nectarinas con moho. Imagen de Roger McLassus 1951 / Wikipedia.

Ante todo, debe aclararse que ninguna bacteria produce ningún moho. Los mohos son hongos, organismos muy distintos de las bacterias. De hecho, los hongos están mucho más emparentados con nosotros los animales que con las bacterias.

La cuestión aquí, y el resumen de lo que sigue, no es tanto si se puede o no consumir ciertos alimentos con moho después de retirarles la parte afectada. Sino que nadie puede garantizar de forma general que sea seguro consumir cualquier alimento que se haya estropeado. Si hay un consejo general, es que todo alimento estropeado debe tirarse.

La razón por la que no comemos el moho es que muchos de ellos producen micotoxinas, compuestos tóxicos que no suelen causar envenenamiento agudo en los humanos, pero que sí pueden provocar efectos muy nocivos por exposición repetida, incluyendo cáncer o toxicidad para órganos como el hígado o el riñón. Además, algunas personas desarrollan reacciones alérgicas a ciertos mohos. Dado que es imposible, sin ser experto en mohos y sin disponer de un laboratorio de análisis, determinar si el moho que ha crecido en un alimento es nocivo o no, y que en realidad ni siquiera puede asegurarse por completo que ninguna especie concreta de moho sea siempre del todo inofensiva (ver abajo lo referente a los quesos), el consejo general es tratarlos todos como lo que son, signo de que un alimento se ha estropeado y debe tirarse.

Los mohos, como otros hongos, se expanden mediante hifas, filamentos que forman una trama llamada micelio. El micelio se extiende más fácilmente en los alimentos blandos y esponjosos, como el pan, que en los duros y compactos, como una zanahoria o un queso manchego. Pero pueden existir grietas en el alimento que no apreciemos a simple vista y a través de las cuales las hifas hayan podido crecer. Por lo tanto, el consejo más sensato es no tentar a la suerte y tirar el alimento contaminado, sea cual sea. Por último, los mohos, como otros hongos, se reproducen mediante esporas. Por este motivo, el moho de un alimento suele extenderse a otros en un mismo recipiente cerrado.

Ante lo anterior, a muchas personas les puede surgir una pregunta lógica: ¿no es cierto que algunos quesos se elaboran precisamente con moho? ¿Qué pasa en estos casos?

Por supuesto que existen muchos hongos comestibles. Y no solo los champiñones, los boletus, las trufas u otras setas. Lo que solemos llamar levadura, en realidad una especie concreta de levadura, Saccharomyces cerevisiae, es el hongo comestible más presente en nuestra dieta, utilizado para elaborar pan, cerveza, vino y otros alimentos. Pero incluso esta especie puede provocar enfermedades en humanos si coloniza lugares donde no debería estar. Por ejemplo, S. cerevisiae puede causar infecciones vaginales, aunque generalmente es otra levadura la responsable de las vaginitis por hongos: Candida albicans, causante de la candidiasis.

Como precaución, no está de más lavarse las manos después de manipular levadura fresca o de panadería (el mismo hongo, pero deshidratado), ya que hay casos descritos de infecciones con S. cerevisiae en personas que manejan la levadura en su trabajo. Esto no se aplica a la llamada levadura química, que en realidad no es levadura, sino bicarbonato sódico con alguna sal ácida para producir el CO2 que hincha la masa en repostería, y que por tanto es completamente inocua.

En concreto, con respecto a los mohos, hay principalmente dos que se usan para producir alimentos, Penicillium camemberti y Penicillium roqueforti. Como ya se adivina por sus nombres, se usan para elaborar quesos, junto con otro moho llamado Geotrichum candidum. Y como también se sigue adivinando por sus nombres, los dos son parientes del hongo en el que se halló el mayor descubrimiento de la historia de la medicina, la penicilina. Otro moho, Botrytis cinerea, causa la llamada podredumbre noble de la uva, que permite la elaboración de ciertos vinos dulces.

Ahora bien, ¿significa esto que podemos hincharnos tranquilamente a comer estos mohos, o que un queso azul nunca se estropea? ¿Penicilina gratis?

La respuesta es no y no. El ser humano ha aprendido a explotar estos organismos para obtener de ellos lo que necesita: en el caso del P. rubrum (antes chrysogenum, antes notatum), la penicilina (que hoy se obtiene por métodos industriales); para los mohos de los quesos, se utilizan cepas concretas que se añaden en la cantidad justa y en las condiciones adecuadas para controlar su crecimiento de modo que no alcancen niveles tóxicos. Tanto P. camemberti como P. roqueforti producen micotoxinas, pero en los procesos de elaboración de los quesos se controlan su producción y el crecimiento del hongo de modo que no haya riesgo para la salud.

Como dijo Paracelso, todo es veneno y nada es veneno, depende de la dosis. Y como dice la ciencia moderna, muy lejos de esa imagen clásica bucólica y pastoril de la botica de la naturaleza, en la biosfera no existen dos equipos, buenos y malos. La naturaleza no ha sido diseñada para servirnos a los humanos. Incluso alimentos muy comunes que creemos inofensivos son potencialmente venenosos: las pepitas y los huesos de las frutas contienen un precursor del cianuro, y las patatas o los tomates contienen solanina, una toxina peligrosa si la ingerimos en gran cantidad.

De todo lo cual se intuye la respuesta a otra pregunta que puede surgir: no, tampoco deben comerse los quesos azules si han criado moho.

Como conclusión, el único consejo sensato y responsable que puede darse de forma general es no consumir nunca alimentos con moho. Las organizaciones de consumidores asumen una función muy necesaria comparando productos, precios y calidades, y vigilando el cumplimiento de las normativas. Pero no son instituciones científicas ni médicas. Deberían dejar los consejos de salud alimentaria en manos de las entidades con el conocimiento y la autoridad pertinentes.

Por último, conviene mencionar que el desperdicio de alimentos es uno de los grandes males de las sociedades de consumo, y ahora además una carga para el cambio climático, ya que la alimentación es la mayor industria emisora de gases de efecto invernadero en su cadena de producción. Pero la solución no es comer alimentos estropeados, sino consumirlos antes de que se estropeen. Comprar con cabeza y con planificación. Y cuando se trata de alimentos que vayan a abrirse y consumirse a lo largo de un tiempo dilatado, por ejemplo, un bote de mermelada, hacer uso de ese gran recurso de la humanidad:

Los conservantes.

Elegir marcas CON conservantes. Al contrario del mito popular, los conservantes no estropean los alimentos. Sirven nada menos que para conservar, impidiendo el crecimiento de hongos y bacterias peligrosas, y por lo tanto reducen el desperdicio de alimentos. A las marcas les interesa vendernos alimentos sin conservantes que se estropeen rápido. A nosotros debería interesarnos, hoy más que nunca, comprar alimentos que duren más, y los conservantes ayudan a mantenerlos en condiciones óptimas de calidad y frescura durante más tiempo.

Los hongos se comunican por impulsos eléctricos parecidos a un lenguaje

Nosotros, animales, solemos contemplar las plantas y los hongos casi como seres de una misma categoría, la de los organismos de apariencia inerte que decoran el paisaje y nos sirven de alimento, o a veces crecen donde no deberían. En realidad estos dos grandes grupos son tan distintos entre sí como nosotros de cualquiera de ellos. Para muchos estudiantes de biología —salvo para los micólogos vocacionales, que por supuesto los hay—, los hongos son como esa pieza del puzle que se deja para el final porque no se sabe muy bien dónde va.

Pero, de hecho, los hongos se parecen más genéticamente a nosotros los animales que a las plantas: un humano y un champiñón, o el moho del pan, pertenecemos a la misma gran división biológica de los opistocontos, mientras que las plantas son arqueoplástidas, algo muy diferente. Como los animales (no nosotros, pero sí los insectos), los hongos tienen quitina en lugar de celulosa. Y al igual que todos los animales, los hongos tampoco producen su propia comida, sino que deben tomarla de otros seres; las plantas sí lo hacen mediante la fotosíntesis, ese gran invento de la evolución sin el cual no existiríamos.

Ocurre que nuestra mentalidad es naturalmente zoocéntrica, y sin duda hoy lo es más que nunca. Durante la mayor parte de la historia de la ciencia nos hemos acogido al paradigma de que las plantas eran seres insensibles sin la menor capacidad de interacción compleja entre sí o con su entorno, más allá de algunas respuestas básicas programadas, como las de una máquina de snacks.

Pero cuando algunos investigadores muy listos, muy atrevidos y sin el menor miedo al ridículo, comenzaron a medir cosas en las plantas que nadie había medido antes, los hallazgos fueron espectaculares: las plantas se comunican entre sí mediante señales químicas, transmiten señales eléctricas y utilizan neurotransmisores, se avisan unas a otras del ataque de sus depredadores —los herbívoros— y ponen en marcha sus respuestas de defensa, cooperan entre sí, aprenden de la experiencia y tienen memoria, reconocen a sus parientes, oyen sonidos y reaccionan a ellos, sienten el tacto, son sensibles al daño, ejecutan computaciones básicas en función de su entorno para tomar decisiones…

Este ha sido uno de los cambios de paradigma más revolucionarios y alucinantes de la ciencia reciente, que he seguido en este blog en los últimos años (aquí, aquí, aquí, aquí, aquí o aquí). Gracias a aquellos investigadores a los que otros miraban casi con pena, hoy ya es habitual encontrar estudios en las principales revistas científicas sobre eso que algunos llaman cognición vegetal, otros inteligencia vegetal, muchos neurobiología vegetal. Y esto último no es necesariamente un oxímoron si pensamos que la neurona se definió a partir de la neurología y no al revés; la neurología existe desde siglos antes del descubrimiento de las células nerviosas, y por lo tanto no hay motivo para no aceptar como neurología algo que no utiliza neuronas pero que cumple funciones similares en otros organismos.

Cualquiera que esté un poco al tanto de los avances de la ciencia ya no puede contemplar a las plantas como esos seres casi indiferentes y pasivos que antes creíamos. Hay en ellas mucho más de lo que vemos con nuestra mirada animal, otra forma de vida alternativa que ha optado por soluciones muy diferentes a las nuestras, y en algunos casos más ventajosas según para qué. Su sistema descentralizado evita la vulnerabilidad de nuestros órganos vitales. No padecen cáncer. ¿Y todavía pensamos que los privilegiados somos nosotros? La ciencia ficción ha jugado con estas ventajas de las plantas: en El enigma de otro mundo (¡alerta de spoiler!), la película de 1951 en la que se basó La cosa de John Carpenter, los alienígenas eran seres vegetales avanzados, virtualmente inmortales como lo son las propias plantas.

Y ¿qué hay de los hongos? Si las plantas y los animales somos capaces de interaccionar de formas tan complejas con otros seres vivos y con nuestro entorno, ¿no tendrán también los hongos sus propios sistemas cognitivos?

Hongos ‘Schizophyllum commune’ en la madera muerta. Imagen de Bernard Spragg from Christchurch, New Zealand / Wikipedia.

Pues, al parecer, sí. Hace ya casi medio siglo se descubrió que las hifas de los hongos, esos filamentos que forman su estructura, transmiten impulsos eléctricos mediante potenciales de acción, de forma similar a nuestras neuronas y a las plantas. El significado y la función de estas señales, solo los hongos lo saben. Pero en un nuevo estudio, un investigador de la Universidad del Oeste de Inglaterra en Bristol dice haber encontrado la presencia de lo que parece un lenguaje en los impulsos eléctricos de los hongos.

El científico computacional Andrew Adamatzky ha registrado los potenciales de acción en varias especies de hongos, insertando microelectrodos en las redes de hifas, y los ha introducido en un algoritmo para identificar patrones. Según su estudio, publicado en Royal Society Open Science, estos impulsos eléctricos no parecen en absoluto aleatorios. Se organizan en secuencias («trenes», en términos neuronales) y son distintos entre diferentes especies, como si cada una tuviera su propio sistema.

Aún más, Adamatzky ha encontrado que estos impulsos contienen patrones consistentes, como si fueran palabras, y que «las distribuciones de longitud de las palabras fúngicas simulan la de los lenguajes humanos», escribe en su estudio. Con esta información, el investigador ha construido un léxico de hasta 50 posibles palabras distintas, que el análisis computacional ha encontrado organizadas en frases con una apariencia de sintaxis. La especie que genera frases más complejas, dice el investigador, es Schizophyllum commune, ese hongo que suele crecer en abanicos sobre las cortezas de los árboles muertos. «Los dialectos de diferentes especies son diferentes», escribe.

Obviamente, no se puede aventurar a la ligera que exista un lenguaje definido en los hongos. Pero dado que estos impulsos existen y dadas sus características, la explicación más factible parece que de algún modo sirvan a un propósito de comunicación, ya que esta es la función de este tipo de actividad en otras especies. Se sabe, por ejemplo, que los impulsos eléctricos cambian cuando un hongo entra en contacto con alimento, y estos impulsos se transmiten a otras zonas de la misma colonia. «Especulamos que la actividad eléctrica de los hongos es una manifestación de la información comunicada entre partes distantes de las colonias fúngicas», escribe el autor.

Adamatzky ha abierto un camino que promete nuevas sorpresas, y en el que anima a otros investigadores a profundizar para descubrir si existe una gramática, unas reglas de construcción que organicen la sintaxis de los hongos, si esta varía entre distintas especies, y si existe en todo ello una semántica que podamos interpretar y entender. «Dicho esto, no deberíamos esperar resultados rápidos», advierte el investigador; «todavía no hemos descifrado el lenguaje de los perros y los gatos a pesar de vivir durante siglos con ellos, y la investigación de la comunicación eléctrica de los hongos está en estado puramente naciente». El traductor hongo-humano, si acaso, tardará, pero al menos hemos comenzado a escucharlos.

El brote de hepatitis en niños, las mascarillas y la mal llamada «hipótesis de la higiene»

Quien siga la actualidad ya estará al tanto de un misterioso brote de hepatitis aguda grave que ha surgido en varios países y que afecta a niños pequeños previamente sanos. Los primeros casos se detectaron en Reino Unido, a los que después se han unido otros en Irlanda, España, Países Bajos, Dinamarca y EEUU. En España, hasta donde sé, se han descrito cinco casos, uno de los cuales ha necesitado un trasplante hepático.

Por el momento, el resumen es que aún no se ha determinado la causa. Se han descartado los virus de la hepatitis, de los cuales se conocen cinco en humanos, de la A a la E. Ciertos vínculos epidemiológicos entre algunos de los niños afectados sugieren un agente infeccioso, pero es pronto para descartar otras posibles causas, entre las cuales se incluyen una intoxicación, una reacción autoinmune o incluso una complicación rara de la COVID-19; algunos de los niños dieron un test positivo de SARS-CoV-2 antes de la hospitalización o en el momento de su ingreso. Ninguno de ellos estaba vacunado, lo que descarta un efecto secundario de las vacunas.

Razonablemente, las autoridades sanitarias han apuntado a un adenovirus como posible causante. Uno de estos virus se ha detectado en todos los casos de EEUU (un total de nueve niños en Alabama) y en la mitad de los registrados en Reino Unido. Los adenovirus, una familia que comprende más de 80 virus conocidos en humanos, circulan habitualmente rebotando entre nosotros y causan resfriados —que en casos graves pueden derivar hacia neumonía—, gastroenteritis, conjuntivitis y otros síntomas leves. Los niños suelen contagiarse con alguno de ellos en sus primeros años de vida. La relación entre adenovirus y hepatitis sí ha sido descrita previamente, pero es rara y limitada a pacientes inmunodeprimidos o que reciben quimioterapia contra el cáncer.

Imagen de Norma Mortenson / Pexels.

Conviene aclarar que hasta ahora ninguno de los casos de esta hepatitis ha sido letal. Todos los niños están evolucionando favorablemente, aunque algunos han requerido trasplante. También es necesario mencionar que se trata de un problema absolutamente excepcional, por lo que no es motivo para alarmarse ni para vigilar o interpretar síntomas en los niños con más preocupación o celo de lo habitual, que hoy en día ya suele ser mucho.

Pero entre las ideas formuladas en torno a este extraño brote, merece la pena destacar una que menciona en un reportaje de Science el virólogo clínico Will Irving, de la Universidad de Nottingham: «Estamos viendo un aumento en infecciones virales típicas de la infancia cuando los niños han salido del confinamiento, junto con un aumento de infecciones de adenovirus», dice Irving, aludiendo a la posibilidad de que el aislamiento de los niños durante la pandemia los haya hecho inmunológicamente más vulnerables al alejarlos de los virus más típicos con los que normalmente están en contacto.

Debe quedar claro que Irving no está afirmando que esta sea la causa del brote de hepatitis. Pero también aquí hemos conocido lo que parece ser un fenómeno general, un aumento de las infecciones en los niños cuando se han ido relajando las restricciones frente a la COVID-19. Y esto nos recuerda una hipótesis largamente propuesta y discutida en inmunología, la mal llamada hipótesis de la higiene. Que paso a explicar, junto con el motivo por el que conviene referirse a ella como «mal llamada».

En 1989 el epidemiólogo David Strachan, de la London School of Hygiene and Tropical Medicine, publicó un breve estudio en la revista British Medical Journal (hoy simplemente BMJ) en el que observaba cómo, de una muestra de más de 17.000 niños británicos, la aparición de dermatitis o fiebre del heno (la típica alergia al polen) se relacionaba claramente con un factor ambiental concreto de entre los 16 considerados en el estudio, y de forma inversamente proporcional: el número de hermanos. Es decir, a mayor número de hermanos, menor probabilidad de dermatitis o fiebre del heno.

Strachan se aventuraba a lanzar una hipótesis: sus resultados, escribía, podían explicarse «si las enfermedades alérgicas se previnieran por infecciones en la infancia temprana, transmitidas por contactos no higiénicos con hermanos mayores, o adquiridos prenatalmente de una madre infectada por el contacto con sus hijos mayores». El epidemiólogo añadía que en el último siglo la disminución del tamaño de las familias, junto con la mayor limpieza personal y del hogar han reducido las infecciones cruzadas en las familias, y que esta podría ser la causa del aumento de las alergias.

Strachan nunca utilizó la expresión «hipótesis de la higiene», pero la idea caló con este nombre en los medios, entre el público más ilustrado en cuestiones de ciencia, e incluso en la propia comunidad científica. La idea básica está clara: el sistema inmune está continuamente en contacto con infinidad de estímulos externos e internos a los que tiene que responder adecuadamente, de modo que tolere los propios y los inofensivos pero reaccione contra los potencialmente peligrosos. Esta educación del sistema inmune se produce en los primeros años de vida, probablemente desde antes del nacimiento. Si se restringen esos estímulos externos, el sistema inmune no recibe el entrenamiento adecuado, y no aprende a responder bien. Así es como pueden aparecer las alergias (reacciones innecesarias contra estímulos inofensivos) o los trastornos autoinmunes (reacciones contra el propio cuerpo).

Lo cierto es que la mal llamada hipótesis de la higiene (ahora iremos a eso), para la que se han propuesto mecanismos inmunitarios concretos y biológicamente factibles, podría explicar lo que es un fenómeno sólidamente contrastado: a lo largo del siglo XX las alergias en los niños, incluyendo las alimentarias, se han disparado en los países occidentales desarrollados y en algunos emergentes, lo mismo que ciertos trastornos autoinmunes como la colitis ulcerosa o la diabetes de tipo 1. Sin embargo, esto no ha ocurrido en los países más pobres, incluso descontando el sesgo de más diagnósticos donde el sistema sanitario es mejor.

Pero ocurrió que la hipótesis caló de una forma equivocada: la alusión a la «higiene» dio pie a la interpretación de que las infecciones clínicas en los niños más pequeños los protegían de posteriores alergias y enfermedades autoinmunes. Lo cual no se corresponde con los datos. Incluso hoy se sigue achacando esta interpretación a Strachan, cuando lo cierto es que él nunca dijo tal cosa; cuando hablaba de «infecciones» no se refería a ninguna en concreto, y por lo tanto no hablaba de patógenos potencialmente peligrosos. Recuerdo que por aquellos tiempos (comienzos de los 90) yo estudiaba inmunología, y no tengo memoria de que los libros de texto dijeran que las enfermedades infecciosas en los niños los protegieran de trastornos inmunitarios.

Sin embargo, parece que de algún modo esta idea ha perdurado con el tiempo. Y por ello, desde comienzos de este siglo algunos inmunólogos han aconsejado cambiar el nombre de «hipótesis de la higiene» por los de hipótesis de la microflora, la microbiota, la depleción del microbioma o los «viejos amigos» (ahora explicaré esta última). Ninguna de estas se ha impuesto ni parece que lo vaya a hacer. Y no está tan mal conservar el nombre original si añadimos la coletilla para indicar que puede llevar a engaño.

En realidad, lo que dice la hipótesis actual es lo siguiente: el ser humano ha coevolucionado con un universo microbiano interno (nuestro microbioma, de ahí lo de los «viejos amigos») y externo que normalmente no nos causa problemas clínicos. Cada vez se reconoce más la importancia del microbioma en la salud y la enfermedad, y es muy posible que su papel incluya esa educación del sistema inmune en los primeros años de vida.

Diversos factores de las sociedades desarrolladas actuales han restringido el contacto de los niños con esos elementos; al intentar sobreprotegerlos contra las infecciones, limitamos ese aprendizaje de su sistema inmune ante los estímulos inofensivos. La obsesión por la limpieza y la esterilidad, junto con la propaganda de productos antisépticos innecesarios que hacen más daño que bien, mantienen a los niños en burbujas inmunitarias que no los benefician.

En un reportaje de 2017 en la revista PNAS Graham Rook, microbiólogo del University College London y uno de los proponentes de la idea de los «viejos amigos», aclaraba que los hábitos de higiene deben mantenerse, y que el lavado de manos es una costumbre beneficiosa; necesaria si, por ejemplo, uno ha estado manipulando un pollo crudo. Pero añadía: «Si tu niño ha estado jugando en el jardín y viene con las manos ligeramente sucias, yo, personalmente, le dejaría comer un bocadillo sin lavarse». Curiosamente, muchas personas harían justo lo contrario, ignorando que un pollo crudo es un cadáver, una posible fuente de bacterias peligrosas —por eso no comemos pollo crudo—, y en cambio un poco de mugre de tierra en las manos no entraña ningún riesgo en condiciones normales.

Comprendido todo lo anterior, se entiende lo que sigue, y cómo se aplica al reciente aumento de infecciones en los niños: durante dos años hemos vivido con mascarilla, impidiendo el intercambio habitual de microorganismos en la respiración. En muchos hogares y escuelas se ha hecho un uso excesivo, innecesario e incluso perjudicial de productos antisépticos. Los niños más pequeños, los nacidos desde el comienzo de la pandemia o poco antes, corren el riesgo de haber sufrido un déficit de entrenamiento de su sistema inmune durante estos dos años pasados.

Si todo esto puede tener algo que ver o no con los extraños casos de hepatitis, no se sabe. Quizá no se sepa. Tal vez se descubra finalmente la causa y sea otra muy diferente. Pero es una buena ocasión para recordar todo lo anterior y subrayar el mensaje que debería quedar de ello: volver a la normalidad es importante también para el sistema inmune.

Cuando algunos especialistas en medicina preventiva o salud pública (a los que ahora además se añaden los servicios de prevención de riesgos laborales*) opinan afirmando que deberían mantenerse ciertas medidas, se está ignorando la inmunología. Se está ignorando la necesidad de un contacto saludable con los antígenos normales e inofensivos de nuestro entorno. Aún es un capítulo en blanco si para los adultos esto podría llegar a ser perjudicial. Pero para quienes aún tienen puesta la «L» en la luneta trasera de su sistema inmune, es bastante probable que lo sea. Al menos en ciertos casos, no llevar mascarilla puede proteger más la salud que llevarla.

*Oído esta mañana en el programa de Carlos Alsina de Onda Cero. Alsina le cuenta a la ministra de Sanidad, Carolina Darias, que el servicio de prevención de riesgos laborales de A3Media ha impuesto a los empleados de esta empresa la obligación de seguir llevando mascarilla hasta «valorar la situación epidemiológica». Darias aclara que lo único que deben hacer estos servicios es evaluar el riesgo concreto en el puesto de trabajo y no valorar la situación epidemiológica, algo para lo cual, insinúa la ministra sin decirlo literalmente, no están cualificados. El colmo puede darse en las pequeñas empresas que no cuenten con un servicio de prevención de riesgos laborales y donde esta decisión se deje en manos de los departamentos de recursos humanos, muy respetables cuando se ocupan de lo que saben y siempre que, en lo que no sepan, se limiten a cumplir la legislación vigente.

Hallados los coronavirus más parecidos a la COVID-19: se estrecha el cerco en torno al origen del virus

Muchas veces ocurre que lo deseable no coincide con lo razonablemente esperable. Lo cual no es siempre malo, porque nos llevamos una alegría si finalmente, contra todo pronóstico, ocurre lo no esperable. Por ejemplo, ojalá algún día lleguemos a conocer el origen del coronavirus SARS-CoV-2 causante de la COVID-19. Pero personalmente y si tuviera que apostar, pondría mis fichas en la casilla más prudente del «nunca lo sabremos».

No conocemos el origen de la inmensa mayoría de los virus. Circulan ideas erróneas según las cuales los orígenes del SARS-1 (el Síndrome Respiratorio Agudo Grave de 2002, el original) y del MERS (Síndrome Respiratorio de Oriente Medio de 2012) se descubrieron rápidamente, y también según las cuales conocemos el origen del VIH. Pero como he explicado aquí repetidamente, todo esto no es exactamente así.

Sí pudo reconstruirse el origen del SARS-1 en murciélagos, pero esto ocurrió 15 años después de su aparición, aunque previamente ya se sabía que probablemente había saltado a los humanos desde las civetas. En cuanto al MERS, se encontraron anticuerpos en los camellos y virus parecidos en murciélagos; finalmente se encontró el MERS en murciélagos. Y respecto al VIH, podría decirse que estamos más o menos en el mismo nivel de conocimiento que ahora con el SARS-2: después de 18 años de investigación se concluyó que el probable ancestro del VIH estaba en los chimpancés, y era una cepa concreta del Virus de Inmunodeficiencia de los Simios (VIS). Con el SARS-CoV-2, se han hallado virus muy similares en los murciélagos. Pero en ninguno de los dos casos se ha encontrado aún una forma ancestral del virus en los animales —un eslabón perdido, en lenguaje popular—, ni se ha podido trazar la zoonosis, o cómo se produjo el salto de animal a humano.

Con respecto al origen del virus de la cóvid, resumiendo lo que sabemos hasta ahora: surgió en la naturaleza —esta hipótesis es la más probable y verosímil, y no hay ningún indicio que sugiera lo contrario—, pero no sabemos si saltó a los humanos también en la naturaleza o si pudo ser en un accidente de laboratorio, algo de lo que no hay pruebas pero que no es descartable; a finales de 2020 se descubrieron virus emparentados con el de la cóvid en muestras de murciélagos congeladas en laboratorios de Camboya y Japón, y en los laboratorios de vigilancia de enfermedades infecciosas emergentes muestras como estas pueden esperar durante años en los congeladores. Por último, se sabe que el origen del SARS-CoV-2 probablemente se encuentre en los murciélagos, aunque se cree que no saltó desde esta especie a los humanos (nunca ha ocurrido esto, que se sepa), y posiblemente se produjo una recombinación (intercambio de fragmentos) entre distintos coronavirus.

Un murciélago Rhinolophus. Imagen de Susan Ellis, Bugwood.org / Wikipedia.

Un murciélago Rhinolophus. Imagen de Susan Ellis, Bugwood.org / Wikipedia.

Acaba de publicarse ahora en Nature un estudio que llevábamos meses esperando y que nos acerca un paso más al origen del virus. Lo esperábamos, porque en septiembre pasado se colgó en internet el preprint aún sin revisar, y ya entonces se comentó. Pero dado que yo no lo hice aquí, aprovecho para rescatarlo ahora que el estudio ya se ha publicado.

Investigadores del Instituto Pasteur y de la Universidad Nacional de Laos han encontrado en tres especies de murciélagos de aquel país los tres coronavirus más parecidos al de la cóvid que se han hallado hasta ahora. Recordemos que al comienzo de la pandemia se identificó un virus llamado RaTG13, hallado originalmente en 2013 en murciélagos de herradura de la especie Rhinolophus affinis en la provincia china de Yunán, como el más similar al nuevo SARS-CoV-2, idéntico en un 96,2% de su genoma. También se hallaron coronavirus del pangolín que, si bien no eran tan similares en su genoma total, sí eran más parecidos que el RaTG13 en la parte que el virus usa para invadir las células. Ahora uno de los tres nuevos virus, denominado BANAL-52, es idéntico al de la cóvid en un 96,8% de su genoma, y más similar también al SARS-CoV-2 que los de pangolín en esa región concreta.

Los investigadores, dirigidos por el virólogo y especialista en patógenos emergentes Marc Eloit, visitaron un complejo de cuevas de caliza en el norte de Laos, donde capturaron 645 murciélagos de 46 especies de los que recogieron más de 1.500 muestras de sangre, heces, saliva y orina. Lo normal en estos casos es descubrir numerosos virus, incluso nuevos; la base de datos de virus de murciélagos recoge ya más de 13.000 secuencias genéticas de virus, de las que más de 5.500 son de distintos coronavirus.

Los investigadores encontraron siete sarbecovirus (un subgénero o grupo de los betacoronavirus que incluye los SARS y sus parientes cercanos), todos ellos en especies de murciélagos de herradura del género Rhinolophus. Secuenciaron el genoma completo de cinco de ellos, a los que han denominado BANAL-52, -103, -116, -236 y -247; BANAL viene de Bat Anal, porque fueron las muestras anales las que se procesaron y de las que se obtuvieron.

De estos cinco, el 52, 103 y 236 son extremadamente parecidos al virus de la COVID-19, tanto que han destronado a los virus de pangolín y al RaTG13 como los más similares al SARS-CoV-2 que se conocen. Aún más, estos virus, de los cuales el BANAL-52 es idéntico al de la cóvid en un 96,8%, tienen regiones de unión al receptor (RBD) que se parecen más al SARS-CoV-2 que ningún otro virus conocido. Recordemos que la proteína S, la llave que el virus utiliza para invadir las células humanas (esos pinchos que se ven en los dibujos y las fotos del virus), lo hace uniéndose a su receptor en las células humanas (llamado ACE2) por una zona concreta, como la parte de la llave que se mete en la cerradura. Esa es la región de unión al receptor o RBD (de Receptor Binding Domain).

Comparando esas secuencias del RBD de unos y otros virus, los autores del estudio han construido este árbol filogenético de los virus más estrechamente emparentados con el de la cóvid. Como expliqué, este tipo de gráficos son árboles evolutivos que muestran cómo las especies (en este caso virus) han ido evolucionando a partir de sus ancestros. Los dos linajes originales del virus de la cóvid aparecen arriba —junto a la figura del hombre— y los más próximos a ellos ahora son los tres nuevos virus BANAL:

Árbol filogenético de la región de unión al receptor de la proteína S de sarbecovirus humanos, de murciélago y pangolín. Imagen de Temmam et al, Nature 2022.

Árbol filogenético de la región de unión al receptor de la proteína S de sarbecovirus humanos, de murciélago y pangolín. Imagen de Temmam et al, Nature 2022.

Pero aún más: los autores han comprobado que estos virus, en efecto, son capaces de unirse al receptor ACE2 humano —de hecho, mejor que el propio SARS-CoV-2 original de Wuhan— y utilizarlo para infectar células humanas en cultivo y multiplicarse dentro de ellas (algo que no hace el RaTG13). Y que esta infección puede impedirse utilizando anticuerpos neutralizantes contra la cóvid.

Es decir, que estos virus son infecciosos para los humanos. Pero ¿podrían provocar una enfermedad similar a la COVID-19? Como ya dije ayer respecto al virus de Lloviu, esto no puede saberse hasta que se compruebe directamente. Quizá algún día los sistemas de Inteligencia Artificial sean capaces de predecir esto, pero con las herramientas actuales es imposible saber a priori con certeza si un virus capaz de infectar a los humanos va a causar una enfermedad leve, grave, mortal o ninguna en absoluto. Los experimentos con animales pueden ofrecer pistas, pero no una respuesta definitiva. Como decía Eloit a Science, esto podría ser el SARS-CoV-3 o lo contrario, una vacuna viva contra el SARS-CoV-2, si el virus no provocara enfermedad pero disparara una respuesta inmune capaz de actuar contra la cóvid.

Con este hallazgo los investigadores nos acercan un poco más al origen de la COVID-19, apuntando cuáles han sido los posibles eventos de recombinación entre distintos virus que en el pasado tuvieron lugar hasta originar el SARS-CoV-2. Y, por cierto, este estudio saca a los pangolines de la ecuación. No es que descarte su implicación en la evolución del SARS-2, pero los RBD de los nuevos virus BANAL hacen que ya no sea necesario recurrir al pangolín para encontrar el origen de la proteína S del virus de la cóvid.

Pero ¿significa esto que ya se ha localizado el origen del virus?

No, aún no. Cuando decíamos arriba que se tardó 15 años en establecer el origen del SARS-1, este fue el tiempo que llevó encontrar en murciélagos de un lugar concreto todos los bloques genéticos necesarios para construir el SARS-1. Esta es una aproximación más que razonable al origen del virus, solo superada por encontrar en un animal un virus virtualmente idéntico al de interés en sus formas más tempranas, de modo que pueda colocarse este virus en el camino evolutivo entre esos posibles recombinantes y el virus de interés. El nuevo estudio aporta un RBD prácticamente calcado e igualmente funcional que el del SARS-CoV-2, lo que apoya con más fuerza el origen natural del virus aportando una pieza esencial en ese puzle evolutivo. Pero aún falta al menos una piececita más: el sitio de corte por furina.

Esta es una pequeña región de la proteína S que aumenta la eficiencia de entrada del virus a la célula. El sitio de furina suele relacionarse con la patogenicidad, aunque no es necesario para provocar enfermedad grave. Algunos virus lo tienen, otros no. Por ejemplo, el MERS lo tiene, pero no el SARS-1, que sin embargo es más peligroso que el SARS-2. También lo tiene algún coronavirus humano de los que solo causan resfriados. El sitio de furina se ha hallado en coronavirus humanos y de murciélagos, pero no en los nuevos virus encontrados en Laos y descritos en este estudio.

Por lo tanto, el rompecabezas evolutivo de la COVID-19 no podrá considerarse resuelto hasta que se encuentre un coronavirus próximo al SARS-CoV-2 con un sitio de corte por furina. Pero es posible que nunca se encuentre, porque tampoco es necesario que este fragmento proceda de otro virus y se haya incorporado al ancestro del SARS-CoV-2 por recombinación: estudios anteriores han mostrado que el sitio de furina ha aparecido espontáneamente y de forma independiente muchas veces en otros coronavirus por procesos evolutivos normales (mutación) durante la adaptación de los virus a sus hospedadores.

Y de ahí mi apuesta; claro que habrá miles de cuevas entre el centro y el sur de Asia, con millones de murciélagos de cientos o miles de especies diferentes, todos ellos incubando e intercambiándose infinidad de tipos de coronavirus distintos que recombinan entre sí en el cuerpo de los animales, como las bolas en el bombo de la lotería. Y con los años, no cabe ninguna duda de que continuarán encontrándose nuevos virus, quizá aún más parecidos al SARS-CoV-2 que los BANAL. Pero es encontrar la aguja en el pajar. Y si el sitio de furina no apareció por recombinación, sino por mutación en el ancestro del SARS-CoV-2, esto ya sería encontrar una aguja en un pajar de pajares. Pero ojalá me equivoque.

Por último, aprovecho también para mencionar otros dos estudios recientes relacionados con el tema. En el primero, aún un preprint no publicado, investigadores chinos cuentan que un coronavirus de murciélago llamado NeoCov, encontrado anteriormente en Sudáfrica y que es el virus conocido más parecido al MERS, puede utilizar el receptor ACE2 (el que permite la entrada del SARS-1 y el de la cóvid) para invadir las células. El propio MERS no hace esto, ya que usa otro receptor diferente. Por suerte, el NeoCov es bastante ineficiente en esta vía de entrada utilizando el ACE2 humano, y necesitaría una mutación para aumentar su capacidad invasiva. Pero el estudio nos recuerda que hay otros muchos virus por ahí que en un futuro podrían convertirse en la próxima amenaza.

Y sobre si hay innumerables peligros víricos acechándonos, no hay más que leer un nuevo estudio de investigadores chinos publicado en Cell, que ha analizado la presencia de virus en 1.941 muestras de 18 especies de animales de caza (de los que se venden después en los mercados como delicia culinaria o entran en el mercado negro), de granjas y de zoos de China. Los autores han encontrado en ellos un total de 102 virus, 65 de ellos totalmente nuevos, y 21 considerados de alto riesgo para los humanos. Entre los virus hallados se encuentran también coronavirus, ninguno similar a los SARS, pero sí uno parecido al MERS en un erizo.

Los animales en los que se encontraron más virus peligrosos fueron las civetas, el animal desde el que se piensa que saltó el SARS-1 a los humanos. Además, los investigadores han detectado que algunos de estos virus saltaron de murciélagos a civetas y a erizos, de aves a puerco espines y de perros a perros mapache. Y finalmente, también han encontrado un tipo de gripe aviar en civetas y en tejones asiáticos con síntomas de enfermedad. Estudios como este no suelen aparecer en los medios si no tienen que ver directamente con la COVID-19 (sobre todo, porque las agencias no mandan la noticia por el tubo), pero sería conveniente que se les diera más difusión para que se comprendiera que vivimos en un planeta de virus. Y que lo que realmente deberíamos preguntarnos no es cómo ocurre esto, sino cómo no ocurre con más frecuencia.

El virus de la cueva asturiana de Lloviu, pariente del ébola, «una enfermedad emergente preocupante»

Los visitantes habituales de este blog sabrán que aquí he seguido muy de cerca todo el desarrollo de la historia del virus de Lloviu, un pariente muy próximo del ébola (familia de los filovirus) que se describió por primera vez en 2011, encontrado en 2002 en cadáveres de murciélagos en la cueva asturiana que ha dado nombre al virus (en respuesta a la pregunta inmediata, sí, hoy se prefiere no asociar nombres de virus a lugares, pero esta norma es de 2015). Y quienes hayan seguido los capítulos anteriores tendrán una idea general sobre lo que se sabe de este virus, que es poco. Sí, podría infectar a humanos. No, no se sabe si podría ser grave. Ni siquiera se sabe realmente si fue el virus el que causó la muerte de los murciélagos en los que se encontró.

En todos estos años los nuevos estudios sobre el virus de Lloviu o LLOV han ido llegando con cuentagotas, porque aunque ya se conocía su secuencia genética, obtenida por investigadores del Centro Nacional de Microbiología del Instituto de Salud Carlos III (ISCIII) y descrita en aquel estudio de 2011, no se había conseguido aún aislar el virus. Esto limitaba a los investigadores a trabajar con virus pseudotipados, es decir, virus diferentes al LLOV a los que se les trasplantan partes de este (que se obtienen a partir de su secuencia genética, ya conocida) para ver cómo se comportan en cultivos celulares o en experimentos con animales.

La razón de que haya costado años aislar el LLOV se debe a que para hacer esto se necesitan dos cosas: muestras que contengan el virus y células en las que cultivarlo. El nuevo coronavirus SARS-CoV-2 se logró aislar en cuestión de semanas gracias a que, por desgracia, había muestras de sobra, y también líneas celulares humanas en las que cultivarlo. Pero durante años las únicas muestras del LLOV fueron las recogidas inicialmente por el ISCIII, y en 2016 se habían acabado; por entonces la investigadora del ISCIII Anabel Negredo, que encabezó el estudio de identificación del virus, me dijo que les quedaban solo unas pocas muestras con baja carga viral. Pero es que, además, cuando se descubrió el LLOV aún no había líneas celulares de murciélago en las que intentar cultivar el virus.

La primera línea celular de Miniopterus schreibersii, el murciélago de cueva en el que se halló el virus, se obtuvo en Japón en 2014, precisamente para poder cultivar el LLOV. Pero los investigadores japoneses no tenían el virus. Por suerte, como ya conté aquí entonces, en 2016 el LLOV reapareció sorpresivamente en Hungría; investigadores del Laboratorio Nacional de Virología de la Universidad de Pécs de aquel país, dirigidos por el virólogo Gábor Kemenesi, encontraron allí murciélagos muertos de la misma especie, y en las muestras de aquellos cadáveres pudieron pescar un genoma que era precisamente el del LLOV. Pero por entonces Kemenesi y sus colaboradores no tenían las células de los japoneses. Intentaron cultivar el virus en células de mono, pero sin éxito.

Un murciélago Miniopterus schreibersii muerto en la mina de Hungría donde reapareció el virus. Imagen de Görföl et al, Ecohealth 2022.

Un murciélago Miniopterus schreibersii muerto en la mina de Hungría donde reapareció el virus. Imagen de Görföl et al, Ecohealth 2022.

Por fin, de la unión de las muestras de Hungría y las células de Japón, el pasado agosto Kemenesi y sus colaboradores lograron aislar el virus.

(Y por cierto, cabe mencionar esto: un virus descubierto en España por investigadores españoles se caracterizó inicialmente en EEUU, se ha aislado por primera vez en Hungría y, como ahora contaré, se ha reconstruido también en EEUU. Nada de esto podría haberse hecho en España porque para manipular un pariente próximo del ébola de propiedades desconocidas se requiere un laboratorio del máximo nivel de contención biológica, NCB-4 o P-4, según los criterios de la Organización Mundial de la Salud para trabajar con patógenos humanos. Y aquí no tenemos de eso porque hay quienes dicen que no lo necesitamos. Pero, hey, tenemos más bares que nadie).

Disponer del virus aislado y cultivable es un enorme avance, ya que permite estudiar qué les hace a las células y a los animales. Y el estudio de Kemenesi y sus colaboradores aporta varios datos interesantes. Se confirma que el LLOV no necesariamente mata a los murciélagos; el virus se encontró en animales muertos, pero también en otros vivos sin ningún síntoma. De hecho, la muestra de la que se cultivó el virus era de un murciélago asintomático, pero positivo al virus por PCR. Estos resultados concuerdan con un estudio publicado por el ISCIII en 2019 y según el cual un tercio de los murciélagos sanos testados tenían anticuerpos contra el virus, signo de una infección pasada que no los había matado.

Los investigadores han comprobado también que el virus es capaz de infectar células humanas y de mono en cultivo. Esto no es una sorpresa, ya que los experimentos con virus pseudotipados lo sugerían, pero sí es una confirmación.

Por último, también han encontrado el virus en parásitos de los murciélagos, concretamente en una garrapata y en varios amiguitos como el de la siguiente foto, chupasangres llamados moscas de los murciélagos (Nycteribiidae) que, aunque lo parezca, no es una araña, sino un insecto díptero como las moscas normales pero sin alas ni ojos. El hallazgo del LLOV en parásitos es una primicia no vista antes en los filovirus, aunque los autores recuerdan que otros virus de esta familia se han hallado en regiones tropicales, y la dinámica de un filovirus en una zona templada podría ser diferente. Pero no está claro si los parásitos podrían ser vectores del virus. Solo se han hallado en murciélagos positivos por PCR, lo que indica que ingirieron el virus con la sangre.

Una mosca de los murciélagos de la familia Nycteribiidae. Imagen de Gilles San Martin from Namur, Belgium / Wikipedia.

Una mosca de los murciélagos de la familia Nycteribiidae. Imagen de Gilles San Martin from Namur, Belgium / Wikipedia.

En resumen, los murciélagos pueden ser un reservorio natural del LLOV, ya que no necesariamente los mata. El virus podría transmitirse de estos animales a los humanos, y este contagio podría producirse de forma directa o quizá accidentalmente a través de parásitos. Pero todo esto aún no nos dice nada respecto a si el LLOV podría ser peligroso para los humanos.

Respecto a esto último, tenemos otra posible pista. Investigadores de la Universidad de Boston dirigidos por Elke Mühlberger, que han colaborado también en el estudio húngaro, han reconstruido el virus a partir de su secuencia; es lo que se llama un virus recombinante. Para completar los extremos del genoma del LLOV, que todavía no se habían secuenciado, lo han hecho con los fragmentos homólogos del ébola y del marburgo, otro virus de la familia. Así, el virus obtenido no es exactamente un lloviu al 100%, pero sí muy parecido.

Los investigadores han comprobado que este lloviu recombinante es capaz de infectar células humanas que también se infectan con el ébola, incluyendo macrófagos (un tipo de glóbulos blancos de la sangre que actúan como basureros del organismo, devorando células enfermas, microbios, restos celulares, etcétera), células hepáticas y pulmonares. Esto último es una mala noticia, ya que la infección pulmonar podría llevar a un contagio respiratorio (algo no demostrado para el ébola en humanos, pero sí en otros primates).

Otra mala noticia es que ciertos anticuerpos terapéuticos que se utilizan contra el ébola no sirven contra el lloviu. Pero a cambio hay buenas noticias: el LLOV sí responde a los antivirales que actúan también contra el ébola. Y sobre todo, y mientras que el ébola provoca en los macrófagos una respuesta inflamatoria que es típica de la enfermedad provocada por este virus, en cambio el LLOV no induce esta inflamación. Lo cual es buena señal. Y aunque no basta para aventurar que el LLOV podría ser inofensivo para nosotros, los investigadores observan que en este sentido se comporta de forma similar al reston, otro pariente del ébola que no es peligroso para nosotros, «lo que potencialmente apunta a que el LLOV no sea patogénico en los humanos«, escriben los autores, «teniendo la capacidad de infectar a los humanos pero sin provocar enfermedad«.

Por cierto, otra novedad que aporta el estudio de Mühlberger son las primeras fotos del lloviu por microscopía electrónica, aunque como ya he dicho en este caso no es un virus nativo sino recombinante. Pero la típica forma filamentosa que da nombre a los filovirus nos trae siniestros recuerdos del ébola:

Imágenes de microscopía electrónica del virus de Lloviu recombinante. Imagen de Hume et al, PLoS Pathogens 2022.

Imágenes de microscopía electrónica del virus de Lloviu recombinante. Imagen de Hume et al, PLoS Pathogens 2022.

También este mes y en vista de los últimos estudios, Kemenesi y sus colaboradores han publicado una carta en la revista Ecohealth en la que advierten de que «el virus de Lloviu en Europa es una enfermedad emergente preocupante«. Los investigadores advierten sobre el riesgo que supone el virus sobre todo para las poblaciones de murciélagos europeos, pero añaden además que «el potencial zoonótico del virus se ha confirmado» y que este tipo de virus «supone un riesgo directo de infecciones humanas«. Finalmente, y además de insistir en la necesidad de más investigaciones, piden que se cierre el acceso a las cuevas donde aniden estos murciélagos y que se traten estos lugares como potenciales focos de infecciones peligrosas. Sería de esperar que la COVID-19 nos hubiera enseñado algunas lecciones.

MÁS NOTICIAS DE CIENCIA EN 20MINUTOS: