Ya van tres arrugas en el espacio-tiempo: detectada una nueva onda gravitacional

The first cut is the deepest (el primer corte es el más profundo), decía una canción de Cat Stevens. La primera vez siempre deja una huella más honda: el primer amor, la primera experiencia sexual o… la primera detección de ondas gravitacionales.

Cuando el 11 de febrero de 2016 los responsables del experimento LIGO (Laser Interferometer Gravitational-wave Observatory) anunciaban por primera vez la confirmación de las ondas gravitacionales pronosticadas por Einstein hace 100 años, todos los medios del mundo seguían la estela de la que se presentó como la noticia científica más importante del siglo.

Hoy se ha anunciado la tercera detección de este tipo de ondas, y está claro que la noticia no llegará tan lejos. Lo cual podría aprovecharse como un motivo de queja, pero me apetece interpretarlo justo del modo contrario: lo que es una increíble noticia es que la detección de ondas gravitacionales se haya convertido casi en algo rutinario.

Primero, refresquemos la memoria. Hace un siglo, Albert Einstein explicó la gravedad, hasta entonces una influencia misteriosa ejercida a distancia por los cuerpos, por la existencia de un tejido formado por el espacio y el tiempo, que pone en contacto los objetos y se deforma por acción de la masa. Una manera clásica de ilustrarlo es la cama elástica, donde una bola de bolos forma una depresión que atraerá hacia ella cualquier otro objeto que lancemos.

Einstein predijo que una fuerte perturbación de esta especie de alfombra del universo causaría arrugas que se propagarían por el cosmos, como una piedra en un lago. Pero dado que estas ondas son muy débiles, hasta hace muy poco tiempo los científicos no disponían de instrumentos lo suficientemente sensibles como para detectarlas.

Esto ha cambiado gracias a LIGO, un experimento compuesto por dos detectores gemelos en dos lugares distintos de EEUU. Cada uno de ellos está compuesto por dos tubos de cuatro kilómetros dispuestos en direcciones perpendiculares, de modo que es posible medir cómo se acortan cuando estas ondas invisibles llegan a la Tierra procedentes de un gran cataclismo cósmico; por ejemplo, la fusión de dos agujeros negros. Incluso una catástrofe espacial de este calibre hace que los tubos se encojan en una longitud ridícula, mil veces menor que el diámetro de un protón.

Ilustración de un agujero negro binario antes de la fusión. Imagen de LIGO.

Ilustración de un agujero negro binario antes de la fusión. Imagen de LIGO.

LIGO consiguió por primera vez medir una onda de este tipo el 14 de septiembre de 2015, aunque los resultados no se hicieron públicos hasta febrero de 2016. La onda procedía de la fusión de dos agujeros negros para dar lugar a uno solo, tan pesado como 62 soles, a una distancia de 1.300 millones de años luz. El hallazgo sirvió además a los científicos para confirmar la existencia de agujeros negros tan grandes producidos por el colapso de una estrella, algo que hasta entonces no se conocía.

El 26 de diciembre de 2015 se detectó una segunda onda, también provocada por la fusión de dos agujeros negros en uno solo, en este caso de 21 veces la masa del Sol, y a 1.400 millones de años luz. El nuevo hallazgo confirmaba que se abre una nueva era para la astronomía: del mismo modo que puede observarse una estrella por su luz, LIGO es también un telescopio que detecta otro tipo de emisión diferente, antes inaccesible a la observación científica. Este mismo año se sumará un tercer detector en suelo europeo, Virgo, situado en Italia.

La tercera onda gravitacional anunciada hoy, detectada el pasado 4 de enero y designada por su fecha GW170104, es curiosamente la más antigua en el tiempo. Procede también de la fusión de dos agujeros negros, pero en este caso a 3.000 millones de años luz de distancia, lo que implica que tuvo lugar hace 3.000 millones de años. El tamaño rellena un hueco entre las dos detecciones anteriores: los dos agujeros negros de partida tenían 32 y 19 masas solares, dando como resultado uno de 49 masas solares con un diámetro de unos 280 kilómetros; casi 50 veces la masa del Sol concentrada en una bola que cabría entre Madrid y Zaragoza. Las 2 masas solares que se pierden en la suma se transforman en la energía gravitacional que se propaga por el universo.

Comparación de tamaños de agujeros negros fusionados en la primera detección (GW150914), la segunda (GW151226) y la tercera (GW170104), junto con una cuarta no confirmada. A la izquierda, los tamaños de agujeros negros estelares más pequeños observados antes por técnicas de rayos X. Imagen de LIGO.

Comparación de tamaños de agujeros negros fusionados en la primera detección (GW150914), la segunda (GW151226) y la tercera (GW170104), junto con una cuarta no confirmada. A la izquierda, los tamaños de agujeros negros estelares más pequeños observados antes por técnicas de rayos X. Imagen de LIGO.

Esta animación muestra una simulación de las arrugas en el espacio-tiempo detectadas por LIGO:

1 comentario

  1. Dice ser John Doe

    No voy a discutir nada, pero las ondas gravitacionales ya se detectaron indirectamecte en el año 1974 en un sistema binario, el Premio Nobel de Física del año 1993 se concedió a Russell Hulse y Joseph Taylor por ese trabajo.

    02 junio 2017 | 10:26

Los comentarios están cerrados.