No, no hemos contaminado Marte (pero lo haremos)

"Selfie" del 'Curiosity' tomada en febrero de 2013 en la llanura John Klein, Marte. La imagen es un mosaico de recortes de múltiples tomas (motivo por el cual no aparece el brazo de la cámara). NASA/JPL-Caltech/MSSS.

«Selfie» del ‘Curiosity’ tomada en febrero de 2013 en la llanura John Klein, Marte. La imagen es un mosaico de recortes de múltiples tomas (motivo por el cual no aparece el brazo de la cámara). NASA/JPL-Caltech/MSSS.

Hace un par de días saltó a los medios la noticia de que el robot Curiosity, residente en Marte desde 2012, ha contaminado nuestro barrio vecino enviando allí microbios terrestres sin pretenderlo. La noticia se ha propagado como una gripe virulenta y parece haber encontrado hueco hasta en la hoja parroquial de Vladivostok. Merece la pena desmenuzar más finamente este asunto para situarlo en sus justos términos, especialmente porque días atrás traté aquí la dificultad que entraña explorar otros mundos sin contaminarlos con microbios procedentes de la Tierra que viajen agazapados en las sondas espaciales, sobrevivan a la travesía interplanetaria y puedan cuajar en entornos potencialmente habitables, como el marciano.

Para empezar, hay que detallar la fuente de la que procede la información: al contrario de lo que rebota por ahí de pantalla en pantalla, no se basa en un estudio científico publicado en Nature, sino en una noticia periodística divulgada en la web de esta revista a raíz de varias comunicaciones presentadas en la 114ª reunión anual de la Sociedad Estadounidense de Microbiología (ASM), celebrada esta semana en Boston. Por supuesto, esto último no resta ninguna credibilidad a los datos, presentados en la convención por investigadores de solvencia y tratados con todo el rigor y la profesionalidad por la periodista de ciencia Jyoti Madhusoodanan. Pero no es un estudio publicado en Nature, y hay diferencias importantes: en primer lugar, las comunicaciones presentadas a congresos suelen resumir el trabajo de los investigadores en crudo. Las convenciones sirven de línea caliente a los resultados científicos que aún no se han elaborado formalmente para su presentación a un journal (revista especializada) y que, por tanto, aún no han atravesado el exigente filtro de la revisión por pares. Por este motivo siempre es esencial que la información sobre ciencia detalle sus fuentes, en especial si se trata de resultados aún sin publicar (algo frecuente en este blog y que siempre se vocea claramente para quien quiera escucharlo).

Pero asumiendo que los resultados sean intachables, aún queda otra piedra en el zapato: si los investigadores enviaran estos datos para tratar de presentarlos en Nature, posiblemente no se cuestionarían sus estándares científicos; en cambio, me da en la nariz que los editores de una revista tan exclusiva como la británica preguntarían: «So what?«. Y es que los resultados no aportan ninguna novedad, nada que no se supiera ya sobradamente. De hecho, los mismos investigadores han presentado en el congreso datos similares relativos a anteriores misiones a Marte, incluidas las sondas Viking enviadas en 1976, y que no hacen sino confirmar lo que ya entonces se comprobó y es de dominio público: las naves espaciales que se posan en otros planetas lo hacen bastante limpitas, pero nunca estériles. Llevamos enviando microbios a Marte desde 1971, cuando las soviéticas Mars 2 y 3 tocaron por primera vez el suelo marciano, respectivamente destazándose contra él y besándolo suavemente.

Aunque los artefactos con destino al espacio se ensamblan en las llamadas salas blancas y sus piezas se someten a tratamientos de esterilización, esto no implica que queden libres de todo polvo y paja microbiológicos, algo que en la práctica es casi imposible. Los protocolos establecen un nivel máximo de carga microbiana tolerable, que en el caso de la NASA y tratándose de mundos potencialmente habitables, como Marte, es de 300.000 células viables en toda la superficie de la nave. Esta población microbiana es insignificante comparada con los millones de microorganismos que contiene un solo gramo de suelo terrestre; pero al fin y al cabo, es una población microbiana.

Es cierto que el problema se agranda cuando, además, los protocolos de esterilización no se respetan. En 2011 se divulgó la noticia de que el ensamblaje del Curiosity violó los llamados procedimientos de protección planetaria. Según publicó entonces Space.com, el problema fue una caja estéril que contenía tres piezas de un taladro y que solo debía abrirse en destino para que el brazo del robot las montara en la cabeza perforadora. Por razones que la información no detallaba, alguien abrió la caja y montó una de las piezas en su ubicación definitiva sin que la NASA fuera advertida de ello hasta que ya era demasiado tarde. La responsable de protección planetaria en la agencia estadounidense, Catharine Conley, restó importancia al incidente, asegurando que el Curiosity viajó «más limpio» que ningún otro robot enviado a Marte desde el programa Viking. Además, resaltó Conley, el diseño de esta misión tuvo en cuenta que el lugar de aterrizaje no albergara hielo al menos hasta un metro de profundidad bajo el suelo, para minimizar el riesgo de contaminación por la perforadora.

Para controlar la carga microbiana de las sondas, los científicos muestrean las superficies del aparato y de la sala de ensamblaje con bastoncillos de algodón, que después se llevan al laboratorio para cultivar los microorganismos presentes e identificarlos por su ADN. Los trabajos presentados en el congreso de la ASM son el resultado de la colaboración entre varias instituciones de EE. UU. dirigidas por la Universidad de Idaho y el Grupo de Biotecnología y Protección Planetaria del Laboratorio de Propulsión a Chorro de la NASA, que llevan años analizando la carga biológica de las sondas espaciales. En el caso del Curiosity, se identificaron 377 especies de bacterias, la mayoría relacionadas con el género Bacillus, muchas de las cuales tienen la capacidad de enquistarse en esporas para resistir condiciones adversas. Los resultados, resumidos en dos comunicaciones (una y dos), indican que 19 de las especies identificadas son capaces de crecer sin oxígeno aprovechando sustratos existentes en Marte, como el perclorato y el sulfato. Las bacterias fueron sometidas a condiciones de desecación, radiación ultravioleta C, alta salinidad y bajas temperaturas. El 11% fueron capaces de soportar múltiples condiciones extremas. «El estudio ayudará a estimar si los microorganismos terrestres suponen un riesgo de contaminación que podría interferir en una futura detección de vida y en las misiones de retorno de muestras», escriben los investigadores en su presentación.

Los científicos presentan también nuevos trabajos que analizan la carga microbiana de misiones anteriores, como los rovers gemelos Opportunity y Spirit y las sondas Viking (estudios uno y dos).  Los resultados fueron parecidos, con 318 microbios identificados en las muestras de los rovers, en su mayoría Bacillus, y una presencia importante de estafilococos, que no forman esporas. De un total de seis misiones a Marte que cubren los últimos 40 años, los investigadores han reunido una colección de 3.500 cepas, de las cuales han identificado 1.322. El 60% corresponden a Bacillus y otros formadoras de esporas, y el 40% restante a Staphylococcus y otras especies no esporulantes. Los investigadores aclaran que todos estos resultados confirman los estudios más rudimentarios practicados con las muestras de las Viking en la época de su lanzamiento, cuando aún no se habían desarrollado las técnicas de secuenciación genómica. Por último, tampoco difieren sustancialmente de lo que anteriormente ya se había demostrado para el caso de Phoenix, el robot estático que analizó exitosamente un entorno cercano al polo norte marciano en 2008. En algunos casos se descubren nuevas especies bacterianas, como el Paenibacillus phoenicis, nombrado en recuerdo de Phoenix.

Con todo lo anterior, quizá ya estemos en condiciones de responder a la pregunta: ¿hemos contaminado Marte? No cabe duda de que ciertos microbios pueden sobrevivir a los viajes espaciales. Los estudios llevados a cabo en la Estación Espacial Internacional que reseñé recientemente demostraban que algunas esporas de Bacillus pueden resisitir un año y medio en el espacio. En cuanto a Marte, es un planeta habitable, pero solo para ciertas formas de vida que en la Tierra consideramos extremófilas, capaces de sobrevivir en entornos invivibles para el resto: sequedad, alcalinidad, temperaturas gélidas, radiaciones letales y una presión atmosférica en torno a los 8 milibares, frente a los más de mil en la Tierra. Hace cuatro años, un equipo de científicos de la Universidad de Florida demostró que la humilde Escherichia coli, una familiar bacteria intestinal y el microbio más utilizado en los laboratorios de todo el mundo, es capaz de sobrevivir en una cámara de simulación de condiciones marcianas durante al menos una semana. Pero una cosa es sobrevivir y otra crecer y multiplicarse, y esto último debería producirse para que podamos hablar de una verdadera contaminación. Y aún no se ha demostrado que se reúnan todos los factores necesarios para ello.

Esto no implica que no existan microbios terrestres capaces de prender y medrar en Marte: también en la reunión de la ASM, otro grupo de investigadores de la Universidad de Arkansas ha propuesto en dos estudios (uno y dos) que los metanógenos, microbios del grupo de las arqueas muy comunes en la Tierra, que viven sin oxígeno, producen gas metano e incluyen especies extremófilas, pueden crecer en condiciones que simulan el ambiente de Marte. «Los metanógenos podrían habitar el subsuelo de Marte», concluyen los investigadores. Pero dadas las condiciones de vida que requieren estos microorganismos, para ellos sería más letal el paso por la sala blanca que el cómodo entorno marciano.

Aun así, parece que es una simple cuestión de tiempo. El Tratado del Espacio Exterior (OST), un acuerdo de adhesión voluntaria que regula el marco ético de actuación más allá de la órbita terrestre, establece que los países serán responsables de cualquier perjuicio y que deberán evitar toda «contaminación dañina». Pero el OST es un instrumento de Naciones Unidas que vincula a los estados, y a corto plazo la primera misión tripulada que podría alcanzar el planeta vecino y contaminarlo irremisiblemente no es una iniciativa pública sino privada, la del controvertido proyecto Mars One; la organización que la promueve no está en absoluto obligada por el OST.

Por otra parte, falta definir qué entendemos por contaminación dañina. A modo de ejemplo, suele plantearse la hipótesis de que en un futuro se detecte algún signo de vida en muestras marcianas. La NASA planea lanzar en 2020 una sonda robótica destinada a recoger material de Marte que sería transportado a la Tierra por misiones posteriores aún sin concretar. De producirse una contaminación, los científicos podrían encontrar microbios en las rocas marcianas que en realidad no fueran nativos del planeta vecino, sino emigrantes terrícolas de vuelta en casa. La situación es análoga a lo que sucede cuando se detectan indicios de microorganismos en meteoritos caídos en la Tierra. Hasta ahora, ha sido fácil determinar que se trataba de contaminaciones terrestres, salvo en los casos de restos inconcluyentes como los presuntos microfósiles del meteorito marciano ALH84001. Pero incluso suponiendo que la evolución hubiera seguido caminos tan paralelos en la Tierra y Marte que fuera imposible discernir entre microbios locales y visitantes, la conclusión final es que estamos ante un dilema de prioridades: ¿preferiremos abrir Marte a la experiencia humana y aceptar la inevitable contaminación, o mantener sus condiciones prístinas sin pisarlo jamás y convertirlo en el santuario natural más restrictivo del universo, donde ni siquiera los científicos que lo estudien tengan permitido el acceso? Vamos, que ni el Monte de El Pardo

11 comentarios

  1. Dice ser Llosif

    Está muy muy muy bien escrito el artículo. Enhorabuena.

    24 mayo 2014 | 16:14

  2. Dice ser Laura

    No es por nada, pero…… si el curiosity está ahí solito en Marte, sin nadie mas……¿quién ha hecho esa foto? Porque esa foto está echa a unos metros de la maquinita…… ¿está realmente en Marte? y, si eso es verdad Marte, ¿esta realmente solo o ya hay gente viviendo alli……..?????

    24 mayo 2014 | 16:28

  3. Dice ser Casandra

    sábado, 8 de junio de 2013

    Terraformar Marte con bacterias

    La tecnología la tenemos y el conocimiento de las condiciones geoquímicas de Marte también. Entonces podríamos inocular el planeta Marte con bacterias, especialmente bacterias extremófilas capaces de crecer en ambientes difíciles y comenzar (o recomenzar) la vida en el planeta rojo. Este podría ser el mayor y más audaz experimento científico de toda la historia. Hace cuatro mil millones de años la tierra era un erial sin vida. Volcanes por doquier, impactos de asteroides día si y día también, mareas de 300 metros arriba y abajo y una atmósfera sin oxígeno y tóxica. Más o menos el mismo panorama desagradable que reina en el resto de los planetas del sistema solar. Pero de repente y sin que sepamos muy bien como la vida apareció y apareció a lo grande: conquistó todo el planeta y lo cambió para siempre.

    Las primeras bacterias eran quimioautótrofas, es decir, sólo necesitaban azufre y hierro para crecer, y de eso había en abundancia. Algunas de estas bacterias desarrollaron un mecanismo en el cual utilizando la energía de la luz solar producían unas reacciones que liberaban oxígeno. En 2008 la misión Phoenix confirmó que existe agua líquida en Marte en el interior del suelo marciano.

    Pero ¿Por qué esperara a que los robots hagan todo el trabajo?. Más discretamente aquí en la Tierra los científicos pueden utilizar sus placas petri para simular como sería las condiciones en Marte e intentar hacerlas más similares a las de la tierra empleando microbios.

    Estas bacterias pioneras deberían realizar algunas taréas hercúleas como aumentar la presión atmosférica y la temperatura media, fundir hielo para crear charcas de agua líquida, aumentar los gases de efecto invernadero y proporcionar un escudo atmosférico contra la radiación ultravioleta. Actualmente la ciencia tiene varios candidatos terrestres incluídas las cianobacterias. La cianobacteria Chroococcidiopsis es una habitante de las rocas, altamente resistente a la desecación, hipersalinidad y capaz de vivir entre los fríos y calores más extremos. La bacteria Carnobacterium spp. crece en el permafrost a presiones atmosféricas muy bajas y sin oxígeno. Las arqueobacterias metanogénicas son capaces de crear un efecto invernadero rápido. Mientras tanto aquí en la Tierra la búsqueda de nuevos candidatos continúa. La secuenciación masiva de ADN hace que aumente año a año el número de especies bacterianas y de arqueobacterias extremófilas conocidas.

    Nuestro conocimiento sobre comunidades de microbios en ambientes extremos está aumentando exponencialmente, ahora tenemos que aprender a manipularos genéticamente igual que hemos hecho con bacterias que son bien conocidas en los laboratorios como la famosa Escherichia coli. De esta manera tendremos en cada bacteria las herramientas genéticas necesarias para sobrevivir las duras condiciones climáticas marcianas.

    24 mayo 2014 | 16:57

  4. Dice ser vida a montones ahí afuera

    Es muy positivo lanzar bacterias por el espacio. De hecho la vida no es patrimonio de la Humanidad, sino que es suceso común por todas partes. Las bacterias pueden desarrollar tipos de habitats en lugares supuestamente estériles y crear cositas interesantes. El miedo a preservar un modo de vida en el Universo, com osiempr esueños de grandeza antropocéntrica, no son lógicos. El Universo es gigantesco y la cantidad y variedad de vida ya es un circo maravillosos en este planeta nuestro.
    Viva la vida y adelante.

    24 mayo 2014 | 17:56

  5. Dice ser Casandra

    02/10/2012

    CIENCIA

    Un nuevo empujón a la teoría de la Panspermia

    Una investigación de la Universidad de Princeton refuerza la idea de que elementos esenciales para la vida o incluso microorganismos llegaron a la Tierra desde el espacio

    La teoría de la Panspermia dice que los elementos básicos para el origen de la vida pudieron distribuirse por todo el Universo y llegar a la Tierra incrustados en una lluvia de meteoritos después de salir disparados al espacio desde otros planetas por el impulso de eventos colosales como gigantescas erupciones volcánicas o el choque con un asteroide. Esta controvertida hipótesis plantea numerosas dudas a los más escépticos, pero algunos científicos la abrazan con fervor. Un nuevo estudio presentado en el Congreso Europeo de Ciencias Planetarias, que se celebra estos días en Madrid, ahonda en esta posibilidad. Según los investigadores, en determinadas condiciones, existe una alta probabilidad de que la vida llegara nuestro planeta como una siembra cósmica. Habría ocurrido durante la infancia del Sistema Solar, cuando nuestro mundo y sus vecinos planetarios habitaban otras estrellas lo suficientemente cerca unos de otros como para poder intercambiar material sólido vía asteroides.

    Según los autores, los resultados proporcionan un fuerte apoyo para la litopanspermia (del griego: lithos = piedra, pan = todo, esperma = origen). Una investigación anterior sobre este fenómeno había sugerido que la velocidad a la que los objetos podían recorrer el espacio hacía que la probabilidad de ser capturados por otro planeta fuera pequeña. Sin embargo, esta nueva investigación, basada en simulaciones por ordenador, sugiere la posibilidad de un proceso llamado transferencia débil, por el que objetos sólidos pueden deambular poco a poco fuera de la órbita de un cuerpo celeste, como un planeta, para terminar en la órbita de otro, aumentando las posibilidades de que este proceso dé lugar a un intercambio de elementos básicos para la vida o, quizás, incluso de microorganismos.

    Un fenómeno muy probable
    La investigación se basa en los principios desarrollados por el conocido matemático de la Universidad de Princeton Edward Belbruno. «Nuestro trabajo dice lo contrario de la mayoría de los trabajos anteriores», dice el científico. «La litopanspermia podría ser un fenómeno muy probable, y este puede ser el primer estudio que lo demuestra. Si este mecanismo es cierto, tiene implicaciones para la vida en el conjunto del Universo. Esto podría haber ocurrido en cualquier parte».

    El equipo observó que las velocidades lentas ofrecen una muy alta probabilidad de intercambio de material sólido mediante la transferencia débil, y también encontró que el tiempo de este cambio puede ser compatible con el desarrollo real del Sistema Solar, así como con el momento de la primera aparición de la vida sobre la Tierra. Los investigadores creen que las formas básicas de la vida son lo suficientemente resistentes para sobrevivir a un viaje interestelar y al impacto final en un planeta.

    El estudio muestra que el intercambio de material entre diferentes sistemas planetarios es probable, pero para que se realice de verdad, el material tiene que aterrizar en un planeta parecido a la Tierra donde la vida pueda prosperar. «Nuestro estudio no prueba que la litopanspermia que realmente sucedió, pero indica que se trata de una posibilidad abierta», indica Amaya Moro-Martín, del Centro de Astrobiología CSIC-INTA y la Universidad de Princeton.

    24 mayo 2014 | 19:04

  6. Dice ser ilya

    A Laura:
    Lee el texto bajo la primera fotografía del Curiosity. Ahí pone por qué no sale el brazo del robot.
    Gracias por el grandioso artículo.

    24 mayo 2014 | 20:48

  7. Dice ser blodhemn

    Es lo que tiene la mugre (alguien tenía que poner el comentario tonto).
    Muy buen artículo.
    EIINN!!! Habeis visto «La Cosa» de J. Carpenter, «La invasión de los ultracuerpos» y otras de ciencia ficción donde nos llegan del espacio o nos traen los astronautas bichejos alienígenas. (¿!!!Alien!!!?, ¡tengo miedo!)

    25 mayo 2014 | 09:07

  8. Dice ser cokito

    La especie humana somos lo peor.
    Estamos superpoblando el planeta. Superpoblandolo!!!!!!!
    La gente no se da cuenta, pero los recursos son limitados.
    Opino lo contrario que el bloguero. Hay que enviar vida a marte sin ningún género de duda. Bacterias, virus, lo que sea….. hay que empezar ya a colonizar otros planetas o reventaremos como las mangranas !!!

    25 mayo 2014 | 15:05

  9. Dice ser Censor

    Si fuera por mi ya lo hubiera «contaminado» con todo tipo de bacterias. Más adelante los científicos ya se ocuparían clasificar que vida es aborígena de Marte o es contaminación.
    Hay que esparcir nuestras semillas por todo el cosmos ahora que podemos.

    25 mayo 2014 | 17:12

  10. Dice ser Francisco

    Sobrevivieron los anillos de radiación de van allen, y siguen vivas esas bacterias o microbios en marte un planeta con una atmósfera no adecuada para la vida?, simplemente increíble.

    26 mayo 2014 | 02:32

  11. ciencias-mixtas

    Una aclaración:

    He releído mi artículo y, sinceramente, no sé de dónde se desprende la idea de que defiendo una postura contraria a la exploración humana de Marte. Ni mucho menos: soy absolutamente partidario y espero que se haga cuanto antes. Lo que sí es imperativo es hacerlo de forma responsable, vigilada y previamente consensuada. Hay un fácil parangón en el que podemos pensar: Marte será dentro de unos años la nueva Antártida. Sostener que debemos mantenernos fuera de la Antártida para no contaminarla es tan barbaridad como proponer que la contaminemos lo más posible y cuanto antes. La diferencia entre ambos casos es que deberán desarrollarse nuevos estándares éticos específicos; primero, porque al fin y al cabo, existen particularidades obvias e importantes en el caso de Marte, y segundo, porque enfoques como el del OST hoy han quedado completamente obsoletos.

    Un saludo, jy

    26 mayo 2014 | 10:41

Los comentarios están cerrados.