Entradas etiquetadas como ‘teoría del caos’

Descubre las revoluciones matemáticas que cambiaron el mundo

Por Mar Gulis (CSIC)

Los ordenadores, la energía, la teoría del caos, el número pi… las matemáticas están por todas partes, y esto se debe a las contribuciones de grandes matemáticos y matemáticas que cambiaron el mundo. ¿Te gustaría conocer a algunas de estas figuras? Puedes hacerlo desde tu casa con la serie de animación ‘Revoluciones Matemáticas’, que en su segunda temporada presenta a cuatro personajes clave de esta disciplina: Emmy Noether, creadora del álgebra moderna; Leonhard Euler, precursor de la topología; Ada Lovelace, pionera de la programación; y Henri Poncairé, que sentó las bases de la teoría del caos.

Cada vídeo, de dos a tres minutos de duración, está acompañado por un taller de matemáticas recreativas en el que se abordan con mayor profundidad los conceptos presentados. Con ellos podrás entender las bases de la teoría del caos, fabricar una máquina para sumar o jugar con grafos de gominolas. Todos los materiales han sido elaborados por el Instituto de Ciencias Matemáticas, adscrito al CSIC y varias universidades madrileñas, y Divermates en el marco del proyecto Ciudad Ciencia. Aquí te contamos algunos de sus contenidos.

La “genio” alabada por Einstein

Comencemos por el álgebra moderna y por su creadora, Emmy Noether (1822-1935). Nadie esperaba a principios del siglo XX que esta matemática alemana fuera a convertirse en la artífice de la teoría que permitiría entender la conservación de la energía. Sin embargo, al morir, el mismísimo Albert Einsten llegó a definirla como “la genio creativa de las matemáticas más significativa que ha existido desde que comenzó la educación superior para las mujeres”.

Muchos sostienen que las matemáticas no volvieron a ser lo mismo después de Emmy Noether. Además de realizar grandes aportaciones al álgebra o la física, Noether fue la primera mujer en participar como ponente en un Congreso Internacional de Matemáticas. Lo hizo en 1932, mientras que la segunda, Karen K. Uhlenbeck, no lo haría hasta 1990. Durante el nazismo, Noether tuvo que trabajar en casa con sus estudiantes y finalmente abandonar Alemania para continuar su labor docente. Se refugió en Estados Unidos hasta su temprana muerte.

El ‘cíclope’ de los poliedros

¿Qué sabemos de cubos, prismas u octaedros? El matemático Leonhard Euler (1707-1783) con su fórmula para poliedros introdujo ideas precursoras de la topología. Entre otras cosas, logró establecer un patrón común para los poliedros convexos con independencia del número de caras, vértices o aristas.

A Euler le gustaron las matemáticas desde pequeño y realizó aportaciones fundamentales a la geometría analítica moderna, la trigonometría y la teoría de los números. Desarrolló el concepto de función matemática y, para ello, definió el número e (o número de Euler), la base de la función exponencial. Además, hablando de números, fue quien popularizó el número π (‘pi’ o 3,141592…). Se le conocía como el ‘cíclope matemático’ ya que perdió la visión de un ojo a los 31 años. 17 años antes de morir se quedó totalmente ciego, pero esto tampoco frenó su carrera ni sus innumerables aportaciones en diferentes campos, que llegaron a publicarse hasta cincuenta años después de su muerte.

La primera programadora

El desarrollo de nuestros ordenadores modernos tiene su origen en Ada Lovelace (1815-1852), pionera de la programación y autora del primer programa de ordenador de la historia. Apasionada de las matemáticas desde pequeña, Ada Byron se codeaba con intelectuales y celebridades como Dickens, Faraday o Darwin. En una de esas reuniones conoció a Charle Babbage, inventor de la máquina diferencial (nuestra calculadora), y con quien trabajó en la máquina analítica. En sus notas a los trabajos de Babbage, Lovelace incluyó una serie de instrucciones, consideradas el germen de la programación y los algoritmos. Para ella, “las maquinas podían ir más allá de los simples cálculos numéricos”, cosa que demostró.

A pesar de su muerte prematura a los 36 años y de que se ha tardado más de cien años en reconocer su relevancia, hoy en día es todo un referente femenino en el campo de la tecnología. Incluso cuenta actualmente con un día propio: el segundo martes de octubre se celebra el ‘Ada Lovelace Day’ para impulsar la participación de las mujeres en la ciencia.

El ‘abuelo’ de la teoría del caos

Y, para terminar, volvemos a la topología moderna de la mano de su fundador, Henri Poincaré (1854-1912), precursor de la teoría del caos. En el instituto, el francés destacó en todas las asignaturas, pero especialmente en matemáticas, como también lo hizo a lo largo de su vida. Fue nombrado miembro de la Academia de Ciencias de Francia y llegó a ser presidente de la institución en 1906.

Poincaré basaba sus resultados en principios básicos y supo de buena tinta que de los errores se aprende. Aunque llegó a publicar alrededor de 500 artículos, tuvo que destruir uno cuando ya estaba en imprenta: el artículo contenía una resolución errónea del famoso problema de los tres cuerpos (trayectoria de tres objetos atraídos por la fuerza de la gravedad). Aunque no pudo solucionar el problema, sus observaciones fueron los primeros pasos de la teoría del caos, capaz de dar respuesta a problemas antes intratables en ámbitos como la economía, la biología o la meteorología.

 

Números primos: los guardianes de Internet

agatamanuelPor Manuel de León y Ágata Timón*

¿Qué tienen que ver los números primos con los millones de mails que surcan la red cada día? Mucho. Estos peculiares dígitos son esenciales para que cualquier información que enviemos llegue al destinatario correcto y no se ‘pierda’ por el camino o sea usurpada por malintencionados. Veamos por qué.

Los números primos son aquellos que solo se pueden dividir por sí mismos y por la unidad: 2, 3, 5, 7, 11, 13, 17… Los matemáticos los consideran los ladrillos con los que se construyen todos los números, ya que cualquier número entero puede descomponerse de manera única como el producto de primos. En otras palabras, estos números serían los átomos de las matemáticas, permitiendo a los demás construirse a partir de ellos en forma de productos.

Los números primos son, además, infinitos. Sin embargo, a medida que se avanza en la lista de estos números, vemos que cada vez aparecen con menos frecuencia. La manera en la que se distribuyen los números primos dentro de los naturales es de tremenda importancia, no solo para los matemáticos, sino para todo el mundo, o al menos para cualquier persona que utilice Internet.

El algoritmo...

El algoritmo criptográfico RSA se utiliza para intercambiar información de forma segura en Internet / Wikipedia

Prueba de ello es el algoritmo criptográfico RSA, que se utiliza para garantizar la seguridad del intercambio de información en la web. Fue desarrollado en 1977 por Rivest, Shamir y Adleman, del Instituto Tecnológico de Massachusetts (MIT), y está basado precisamente en la factorización de números enteros en números primos. Como en todo sistema criptográfico de clave pública, cada usuario posee dos claves de cifrado: una pública y otra privada. Cuando se quiere enviar un mensaje, el emisor usa la clave pública del receptor para cifrar su mensaje, y el receptor, cuando lo recibe, se ocupa de descifrarlo usando su clave privada. En el sistema RSA los mensajes enviados se representan mediante números, y el funcionamiento se basa en el producto, conocido, de dos números primos grandes elegidos al azar y mantenidos en secreto.

adfasf

El matemático Bernhard Riemann / Wikipedia

A priori, parecería sencillo romper el código, pues bastaría con descomponer un número en sus factores primos; pero, cuando se trabaja con primos de 100 dígitos, al multiplicarlos se obtendrá un número de tal magnitud que descomponerlo ‘a lo bruto’ supondría una tarea titánica. Por eso las transacciones comerciales por Internet dependen de los números primos, lo que los hace muy importantes para los negocios, las comunicaciones, los registros… Conocer cómo se distribuyen, y poder así conseguir primos cada vez más grandes que sirvan de clave criptográfica, es un gran reto para las tecnologías y para las propias matemáticas.

Y ese es el desafío que plantea la famosa hipótesis de Riemann, que hasta ahora nadie ha sido capaz de resolver, pese al esfuerzo de los mejores matemáticos del mundo durante más de 145 años. Formulada por Bernhard Reinmann en 1859, trata de explicar cómo podrían estar distribuidos los números primos, pero su autor no pudo llegar a demostrarla. Si alguien lograra hacerlo, podría transformarse la forma de hacer negocios y afectar a la mecánica cuántica, la teoría del caos y al futuro de la computación.

Por eso el Instituto Matemático Clay de la Universidad de Cambridge (Massachussets) anunció en 2000 que premiaría con un millón de dólares a quien lograra despejar la famosa conjetura.

 

* Manuel de León es director del Instituto de Ciencias Matemáticas y autor del libro Rompiendo códigos. Vida y legado de Turing (CSIC-Catarata), que ha coescrito junto a Ágata Timón.