BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘oceanografía’

Corales: los chivatos del océano

Por Mar Gulis (CSIC)

En plena revolución industrial, los canarios, muy a su pesar, cumplieron un importante papel en las minas de carbón. Al ser unos pájaros muy sensibles al metano y al monóxido de carbono, los mineros los utilizaban como señal de alarma. Los llevaban a la mina y cuando los canarios dejaban de cantar, los mineros escapaban a toda velocidad. Afortunadamente hoy se utilizan detectores de gases y sistemas de ventilación como métodos de alerta.

Corales marinos. / USFWS/Jim Maragos. Flickr

Corales marinos / USFWS/Jim Maragos. Flickr

El científico John Veron, descubridor de innumerables especies de corales marinos, se refirió a esta anécdota para ilustrar la importancia de estos organismos en los ecosistemas oceánicos. En un artículo en Yale Environment 360, el investigador australiano concluyó que los arrecifes de coral son los canarios de los océanos, y que, por ello, los humanos debemos estar atentos a sus señales. En otras palabras, el delicado estado de estos animales –sí, aunque parezcan plantas, son animales– es un indicador del empeoramiento de la salud de los océanos. Según el World Resources Institute, alrededor del 75% de los corales que hay en el mundo está en peligro.

Estos organismos calcáreos, que se componen de animales diminutos –pólipos– y de los esqueletos que dejan al morir, están sufriendo las consecuencias de la progresiva acidificación de los océanos. El aumento de emisiones de CO2 explicaría este fenómeno. Precisamente cuando comenzó la revolución industrial, mientras los mineros utilizaban a los canarios en las minas, empezaba a detectarse la peligrosa acidificación en las aguas oceánicas. Desde entonces, la acidez promedio del océano superficial ha aumentado un 30%, según el proyecto Malaspina, liderado por el CSIC.

Al absorber parte del CO2 que emitimos los humanos a la atmósfera, los océanos están experimentando un descenso del pH del agua, que pierde alcalinidad. En eso consiste la acidificación, que a su vez provoca una disminución de la capacidad del océano de absorber más CO2 atmosférico. Así, cada vez será más difícil estabilizar las concentraciones de este gas de efecto invernadero que contribuye al cambio climático.

No solo los corales se ven afectados por el aumento de la acidificación, también otros organismos calcáreos como los mejillones. / Flickr

No solo los corales se ven afectados por el aumento de la acidificación, también otros organismos calcáreos como los mejillones / Flickr

Durante la expedición Malaspina, cuyo objetivo principal era evaluar el impacto del cambio global en los océanos, las mediciones que se realizaron en el Atlántico Norte Subtropical demostraron que la acidificación ha penetrado ya en las profundidades oceánicas y es perceptible hasta los 1.000 metros de profundidad. Así se explica en uno de los paneles que conforman la exposición Un mar de datos, que compila los principales resultados obtenidos en este ambicioso proyecto de investigación oceanográfica. Un agua oceánica cada vez más ácida tendrá efectos negativos para la biodiversidad, especialmente para los organismos que construyen estructuras de carbonato, como corales, moluscos, crustáceos y erizos de mar.

Sin embargo, la pérdida de corales tiene consecuencias especialmente desastrosas, pues estos organismos son el hábitat natural de miles de especies marinas (en torno al 25% del total), algunas de ellas de consumo humano. No solo eso. Gracias a su consistencia, los arrecifes de coral protegen a las costas de la erosión y los embates de las olas, formando recintos poblados por muchos animales que son fuente de alimento de otros organismos superiores. Si el coral sufre daños irreparables y es incapaz de regenerarse, otras especies estarían condenadas a la desaparición.

Con los niveles actuales de emisión de CO2, las concentraciones de este gas podrían aumentar exponencialmente para finales de este siglo. Y mientras la acidificación puede acelerarse en cortos períodos de tiempo, la comunidad científica cree que no existen soluciones capaces de invertir el proceso en el corto plazo. Pero no es esta la única amenaza para los arrecifes de coral: la sobrepesca, la contaminación y los vertidos, el exceso de sedimentación, o los aumentos de la temperatura del agua también juegan en su contra.

Los corales, como los canarios, ya nos están avisando.

¿Una Europa congelada? El paradójico desenlace del calentamiento global

The day after tomorrow

Imagen promocional de la película The day after tomorrow

Por Mar Gulis (CSIC)

La hipótesis de que el calentamiento global, paradójicamente, podría conducir a un enfriamiento más o menos abrupto de las zonas más habitadas del planeta no es nueva para la ciencia. Tampoco para el público general, puesto que a mediados de la década pasada la idea alcanzó cierta notoriedad en los medios de comunicación. La película The day after tomorrow fue, sin duda, el producto de Hollywood que más contribuyó a difundirla.

¿Cuál es la base científica de esta hipótesis? Para responder a esta pregunta, primero es necesario comprender la dinámica global de las corrientes marinas y su importante papel en la regulación climática de la Tierra.

Impulsadas principalmente por el viento, las corrientes superficiales calientan unas zonas del planeta y enfrían otras. Los flujos calientes transportan calor desde los trópicos y los subtrópicos hacia los polos; como la Corriente del Golfo y su brazo que se alarga hasta el Atlántico Norte, que dan a Europa un clima más cálido del que tendría si no existieran. Como los vientos del oeste llevan esta corriente hacia tierra, los países del este del océano Atlántico tienen un clima más templado que los del oeste, aunque se encuentren a la misma latitud. Por eso el invierno en Reikiavik, la capital de Islandia, puede llegar a ser más suave que el de Nueva York, aunque la primera esté bastante más al norte que la segunda.

Por su parte, las corrientes frías hacen que se encuentren ciertas especies en lugares donde no se esperaría verlas. Por ejemplo, aunque la mayoría de los pingüinos viven en climas polares, existe una especie que vive en las Islas Galápagos (situadas frente a la costa de Ecuador), que tienen clima tropical. Esto es debido a la existencia de la Corriente de Perú, que transporta agua fría procedente de la Antártida a lo largo de la costa oeste sudamericana.

Sin embargo, las corrientes superficiales son solo la parte ‘visible’ de la circulación oceánica global, conocida también como circulación termohalina. Este gran cinturón, que conecta aguas de todos lo océanos, está impulsado por dos puntos de formación de aguas profundas: uno cerca de Groenlandia y otro en el mar de Weddell, en la Antártida. El agua se hunde en estos lugares por su mayor densidad, una propiedad que aumenta cuando lo hace la salinidad y/o cuando desciende la temperatura. Durante el proceso de formación de hielo que tiene lugar en los mares polares, la sal es expulsada al agua circundante. Esto hace que se cree un agua más densa, muy fría y con más contenido en sal, que se hunde para dejar que su lugar en la superficie lo ocupen masas de agua menos densas.

Las aguas que se han hundido en el Ártico se dirigen por el fondo del mar hacia la Antártida, donde se bifurcan hasta que vuelven a aflorar en el océano Índico y en el océano Pacífico. Por otra parte, los vientos provocan corrientes superficiales que transportan el agua menos densa y más cálida hacia el Atlántico Norte, donde se hundirá de nuevo al enfriarse y ganar salinidad. Este patrón de circulación a escala global tarda unos mil años en completarse.

Circulación global

Pero, ¿por qué razón la consecuencia del calentamiento global sería un enfriamiento de amplias zonas del planeta? Si el calentamiento fundiera el hielo ártico, tal y como está ocurriendo, se incrementaría el agua dulce de las zonas boreales. Esta agua, menos densa, probablemente ya no se hundiría, lo que podría provocar que la denominada cinta transportadora del Atlántico –el sistema de corrientes que mantiene cálida Europa– interrumpiera o cambiara su patrón de circulación. Si esto ocurriese, la temperatura atmosférica media de Europa caería en picado…

 

Si quieres más ciencia para llevar sobre corrientes marinas consulta la web del proyecto de divulgación del CSIC y la Obra Social “la Caixa” El mar a fondo.

Océanos que regulan el clima y otras curiosidades, en la ‘Gymkhana de los mares’

Por Mar Gulis (CSIC)

Detalle de uno de los talleres de la Gymkhana: diferentes tipos de arenas del mundo

Detalle de uno de los talleres de la Gymkhana: diferentes arenas del mundo

¿Hay vida en el hielo marino? ¿Cuál es la máxima profundidad a la que viven los corales? Hoy se celebra en Madrid la Gymkhana de los mares y océanos’, un gran evento de divulgación en el que estudiantes de ESO y Bachillerato ‘navegarán’ por la ciudad en busca de respuestas a estas y otras muchas preguntas sobre el medio marino. Si tú también sientes curiosidad por conocer la solución a estos interrogantes, sigue leyendo.

Los mares y océanos tienen un papel fundamental en la regulación del clima de nuestro planeta. Entre otras cosas, son responsables de que la temperatura media en Lisboa sea más elevada que la de Nueva York, aunque ambas ciudades se encuentren situadas prácticamente sobre la misma latitud. En concreto, las causantes de este fenómeno son la corriente del Golfo y su brazo que se alarga hasta el Atlántico Norte. Impulsadas principalmente por los vientos del oeste, transportan el agua cálida del trópico y el subtrópico hasta las costas europeas, dando al continente un clima mucho más cálido del que tendría si no existieran.

El medio marino alberga también una gran variedad de hábitats, sin los cuales la vida en el planeta no sería posible tal y como la conocemos. Los millones de kilómetros cuadrados de hielo que cada año se forman en los casquetes polares podrían parecer un hábitat hostil para los organismos vivos, pero paradójicamente son responsables de una de las mayores explosiones cíclicas de vida que se dan en el planeta. Durante el invierno atrapan en su interior numerosas microalgas que, con el deshielo, se liberan al agua y comienzan a multiplicarse de forma masiva, despertando todo el ecosistema de la Antártida. El krill, pequeños crustáceos que se alimentan de microalgas y de los que a su vez se nutren otras especies, también ‘florece’ y con él los elementos superiores de la cadena trófica, como peces, ballenas, focas, pingüinos y otras aves.

Uno de los grupos de estudiantes participantes en la Gymkhana

Uno de los grupos de estudiantes participantes en la Gymkhana

Los bosques de corales pétreos que habitan a más de 400 metros de profundidad son otro hábitat esencial para la biodiversidad marina. A diferencia de los arrecifes más conocidos de los trópicos, estos corales profundos son fríos –se desarrollan a temperaturas de entre 4ºC y 13ºC– y no dependen de la luz solar para sobrevivir. Sin embargo, forman auténticas ‘guarderías’ para especies de interés comercial como el bacalao antártico.

La ‘Gymkhana de los mares y oceános’, organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Obra Social “la Caixa”, se propone acercar a los más jóvenes el conocimiento científico sobre el medio marino. Cerca de 300 estudiantes de ESO y Bachillerato están participando en los talleres, juegos y experimentos de esta iniciativa, que se celebran de manera simultánea en una decena de centros de investigación, museos y fundaciones de la ciudad. Todas las actividades han sido diseñadas por investigadores del Instituto de Ciencias del Mar del CSIC en el marco del proyecto ‘El mar a fondo’.

¿De dónde viene la sal del mar?

Por Mar Gulis

Si observamos la etiqueta de una botella de agua mineral, comprobaremos que contiene una pequeña cantidad de sales. Estos componentes no han sido añadidos artificialmente sino que provienen de la disolución de las rocas por las que ha pasado el agua (un proceso que recibe el nombre de lixiviación).

Boyas SMOS

Boyas usadas durante la Expedición Malaspina 2010 para medir la salinidad superficial del océano con el satélite SMOS de la Agencia Espacial Europea (ESA). / Joan Costa-CSIC

Durante millones de años el agua procedente de ríos y manantiales, como la de la botella, ha ido a parar al mar. Junto con ella, el polvo que el viento transporta desde tierra, las cenizas volcánicas y las fuentes hidrotermales de los fondos marinos también han ido depositando sales en mares y océanos. En ocasiones de forma nada desdeñable, como ocurre habitualmente con las tormentas de arena procedentes del Sahara o como sucedió en 2010 con la erupción del volcán islandés Eyjafjallajokull.

Puesto que en el proceso de evaporación del mar el agua se va pero las sales se quedan, la concentración de sales ha ido aumentando, año tras año, hasta alcanzar la salinidad actual, que es aproximadamente de unos 35 gramos de sal por litro de agua de mar. Sin embargo, hay que tener en cuenta que la salinidad puede variar bastante entre diferentes mares. Por ejemplo, en el Mar Muerto, que está bastante aislado y en el cual hay mucha evaporación, la salinidad puede ser muy elevada –entre cinco y diez veces mayor que la del Mediterráneo–. En cambio, en la Antártida encontramos habitualmente salinidades de 33 o 34 psu (aproximadamente 33 o 34 gramos de sal por litro de agua). Esto es debido a la disolución de los icebergs y las masas de hielo continental.

Sin sales, los océanos y la Tierra no serían lo que son. Estos compuestos hacen que el agua de mar sea más densa que las aguas continentales y que tenga un punto de congelación menor, unos -2º C. Las pequeñas diferencias de salinidad y temperatura hacen que algunas masas de agua sean más densas que otras (a más salinidad y menos temperatura, más densidad). El agua más densa se hunde y deja lugar en la superficie a aguas menos densas, lo cual es clave para la circulación de las corrientes marinas que distribuyen el calor por el planeta y regulan su climatología.

Además, las sales son de vital importancia para los organismos marinos. Por ejemplo, el esqueleto de ciertos corales y las conchas de almejas, ostras y algunos caracoles están construidos con carbonato cálcico.

5 años de variaciones en la salinidad superficial del mar captadas por el satélite SMOS / ESA

 

Si quieres más ciencia para llevar sobre las sales del mar consulta las web El mar a fondo e ICM Divulga, así como la exposición Un mar de datos.

¿Hay realmente ahora más medusas en el mar que antes?

Por Mar Gulis

En los últimos años la llegada de medusas a las costas mediterráneas españolas ha generado cierta alarma entre la sociedad y también ha despertado el interés de la comunidad científica. Aunque el sentir general es que cada vez hay más medusas en nuestras costas, los científicos no pueden afirmarlo con certeza debido sobre todo a la falta de datos a largo plazo. Sin embargo, es una realidad que cada verano cerca de dos millones de bañistas sufren picaduras de medusa. Además, la situación ha empeorado en los últimos años debido a la llegada de nuevas especies.

Aunque aún no haya datos concluyentes sobre el aumento de las proliferaciones de medusas, los investigadores del Instituto de Ciencias del Mar del CSIC (ICM) se atreven a formular alguna hipótesis. Los enjambres de medusas son arrastrados hacia las playas por las corrientes superficiales generadas por los vientos (de mar a tierra). Si el agua costera tiene una temperatura (y por tanto una densidad) distinta a la de mar abierto, las corrientes superficiales encuentran grandes dificultades en arrastrar los enjambres de medusas hacia la costa. Pero cuando las aguas presentan una temperatura muy similar, las corrientes las arrastran en pocos días. Uno de los factores climáticos que mencionan son los inviernos suaves y cortos (cada vez más frecuentes), que dan lugar a una menor emisión al mar de agua dulce y fría. Otro factor, que requiere estudios más detallados, es el progresivo calentamiento global, que podría agudizar la frecuencia de inviernos más suaves y más cortos. Sin embargo, los factores climáticos, aunque son importantes, no explican por sí solos la llegada a las playas mediterráneas de gran cantidad de medusas y de zooplancton gelatinoso.

Entre las causas más defendidas por algunos científicos está la disminución drástica de los grandes depredadores de medusas: tortugas y algunos peces como los atunes. Las poblaciones de estos organismos se han visto reducidas enormemente en las costas mediterráneas debido a su pesca indiscriminada. Otros animales que se alimentan de medusas son las aves marinas, pero su incidencia es menor.

Además, las medusas ejercen de forma natural un control sobre sus poblaciones. Entre ellas no es extraño el canibalismo cuando les falta otro tipo de presas para su alimentación. Pero, aparentemente, en las zonas de máxima abundancia de medusas en el Mediterráneo hay suficiente zooplancton como para no necesitar comerse las unas a las otras.

Medusas del Mediterráneo

Especies de medusas comunes en el Mediterráneo.

 

Las más frecuentes y temidas del Mediterráneo

Se calcula que en las costas mediterráneas hay alrededor de 300 de las 4.000 especies que existen en el planeta. Entre las frecuentes y urticantes destaca la medusa luminiscente (Pelagia noctiluca). Es de color rosado rojizo, su umbrela (esa especie de ‘bolsa’ tan característica) puede alcanzar un diámetro de 20 cm y sus ocho tentáculos marginales llegan a medir hasta dos metros de longitud. La superficie de la umbrela está cubierta de verrugas marrones.

Entre las medusas que abundan en las costas mediterráneas españolas también se encuentran Rhizostoma pulmo y Cotylorhiza tuberculata. Rhizostoma pulmo o acalefo azul es una de las medusas más grandes de nuestras costas y es algo urticante. En cuanto a Cotylorhiza tuberculata es conocida como huevo frito por su forma y color; es poco urticante y tiene preferencia por las aguas cálidas.

La temida carabela portuguesa (Physalia physalis) es una colonia flotante formada por individuos con una cámara llena de gas de color transparente-violeta y una vela en la parte superior muy reconocible. La parte sumergida está formada por tentáculos azules finos y largos que pueden alcanzar hasta 20 metros. Es nativa del océano Atlántico y poco frecuente en las costas mediterráneas españolas, pero cuando las visita, causa alarma. Está clasificada como muy urticante: posee un veneno potente con propiedades neurotóxicas, cardiotóxicas y citotóxicas (que afectan a las células). El contacto puede producir escozor y dolor intenso, y en algunos casos reacciones sistémicas. En la zona de contacto suele aparecer una línea de bultos blancos ovalados en el centro y un margen rojo. Algunos efectos generales aunque poco comunes incluyen temblores, diarrea, vómitos y convulsiones.

Temidas y comunes

De izquierda a derecha, medusa luminiscente (Pelagia noctiluca), acalefo azul (Rhizostoma pulmo), ‘huevo frito’ (Cotylorhiza tuberculata) y carabela portuguesa (Physalia physalis). / ICM

Con el objetivo de determinar la evolución de la masificación de las medusas y predecir su proliferación, el CSIC creó en 2008 el Proyecto Medusa, que actualmente se enmarca en otros dos grandes proyectos europeos (MED-JellyRisk y Cubomed). Como los investigadores no pueden llegar a todos los puntos del mar, han pedido ayuda a la sociedad a través del proyecto Observadores del mar, del que hablamos la semana pasada en este blog. Dentro del portal web, que agrupa varios proyectos de ciencia ciudadana, se encuentra el proyecto Alerta Medusa. En esta página, cualquier persona puede informar de las medusas que haya visto, aportando el mayor número de datos posible (fecha, lugar, especie si se identifica, fotografías). Como dicen los investigadores del proyecto, ¡todo avistamiento cuenta!

 

Si quieres más ciencia para llevar sobre medusas, descárgate la guía de identificación de estos animales y los protocolos de actuación elaborados por el ICM. El proyecto de ciencia ciudadana Observadores del mar cuenta con el apoyo económico de la FECYT.

Si te pica una medusa, ni amoniaco ni agua dulce

Por Mar Gulis

Ni todas las medusas son dañinas para los humanos ni todas requieren el mismo protocolo de actuación ante una picadura. En internet y en la sabiduría popular existen varias recomendaciones, a veces contradictorias, sobre cómo debemos actuar si accidentalmente nos vemos las caras con una medusa. En el Instituto de Ciencias del Mar del CSIC (ICM) han elaborado unas guías con información para identificar las medusas y saber cómo actuar si nos pican.

Pelagia noctiluca

Ejemplar de Pelagia noctiluca (medusa luminiscente). / ICM

Estos animales gelatinosos, reconocibles por sus tentáculos y su umbrela (esa especie de ‘bolsa’ tan característica), llegan a las costas durante todo el año, pero sobre todo lo hacen entre primavera y verano. Las medusas se incluyen en el grupo de los animales cnidarios, que poseen unas células llamadas cnidocistos: una especie de ‘microjeringas’ que inyectan sustancias tóxicas y que utilizan para alimentarse o defenderse. En latín cnida significa urticante. Estos cnidocistos están por todo su cuerpo aunque concentrados en los tentáculos. El grado de toxicidad para los humanos depende de la especie de la medusa. Su capacidad tóxica persiste incluso después de la muerte del animal. Por eso, cuando nos las encontramos en la playa es importante no tocarlas aunque parezcan muertas, ya que con las olas sus esporas tóxicas pueden volverse a hidratar y, con ello, recuperar su capacidad venenosa.

Se calcula que en las costas mediterráneas hay alrededor de 300 de las 4.000 especies que existen en el planeta. Pero que no cunda el pánico: según la investigadora del CSIC Macarena Marambio, de las especies más frecuentes en el Mediterráneo español muy pocas son urticantes. Con el objetivo de determinar la evolución de la masificación de las medusas y predecir su proliferación, el ICM creó en 2008 el Proyecto Medusa. En el marco de este proyecto se han elaborado también protocolos de actuación.

Si las vemos, lo mejor que podemos hacer es no tocarlas y bañarnos con precaución. Pero si tenemos la mala suerte de que nos piquen, desde el proyecto insisten en desmitificar ideas falsas: nada de amoniaco, agua dulce, vinagre (que sólo funciona con algunas medusas) o alcohol. Tampoco funciona la orina.

Partes de una medusa

Partes de una medusa. /ICM

Como lo normal es que no sepamos reconocer la especie, el protocolo general a seguir es el siguiente:

1) Lavar la zona afectada con agua de mar cuidadosamente y sin frotar.
2) Si está disponible, aplicar solución de bicarbonato durante cinco minutos (50% bicarbonato comercial y 50% agua de mar) para prevenir un posible envenenamiento posterior producido por tentáculos residuales en la piel.
3) Utilizar pinzas, guantes o una tarjeta plástica (como las de crédito) para quitar tentáculos o fragmentos.
4) Aplicar hielo envuelto en una toalla o ropa durante 5-15 minutos (como es agua dulce no debe ponerse en contacto directo con la piel).
5) Reevaluar el dolor y volver a aplicar hielo si es necesario.
6) Si el dolor persiste, consultar a profesionales de salud por si es necesario un analgésico o un preparado de hidrocortisona.

Además, el ICM ha elaborado la aplicación móvil gratuita MedJelly, que permite consultar la presencia de medusas en las playas de Cataluña en tiempo real. La idea es que en un futuro próximo la aplicación pueda funcionar en toda la costa mediterránea.

Y si esta lectura no te ha quitado las ganas de ir a la playa y quieres saber más sobre las medusas, siempre puedes descargarte el tablero y las fichas del Juego de la Medusa del ICM. ¿Qué tal una partida antes del chapuzón?

 

Si quieres más ciencia para llevar sobre medusas, entra en la web del Proyecto Med-Jellyrisk y descárgate la Guía de identificación de medusas con información sobre las especies más habituales y los Protocolos de actuación del CSIC.