Entradas etiquetadas como ‘números’

Descubre las revoluciones matemáticas que cambiaron el mundo

Por Mar Gulis (CSIC)

Los ordenadores, la energía, la teoría del caos, el número pi… las matemáticas están por todas partes, y esto se debe a las contribuciones de grandes matemáticos y matemáticas que cambiaron el mundo. ¿Te gustaría conocer a algunas de estas figuras? Puedes hacerlo desde tu casa con la serie de animación ‘Revoluciones Matemáticas’, que en su segunda temporada presenta a cuatro personajes clave de esta disciplina: Emmy Noether, creadora del álgebra moderna; Leonhard Euler, precursor de la topología; Ada Lovelace, pionera de la programación; y Henri Poncairé, que sentó las bases de la teoría del caos.

Cada vídeo, de dos a tres minutos de duración, está acompañado por un taller de matemáticas recreativas en el que se abordan con mayor profundidad los conceptos presentados. Con ellos podrás entender las bases de la teoría del caos, fabricar una máquina para sumar o jugar con grafos de gominolas. Todos los materiales han sido elaborados por el Instituto de Ciencias Matemáticas, adscrito al CSIC y varias universidades madrileñas, y Divermates en el marco del proyecto Ciudad Ciencia. Aquí te contamos algunos de sus contenidos.

La “genio” alabada por Einstein

Comencemos por el álgebra moderna y por su creadora, Emmy Noether (1822-1935). Nadie esperaba a principios del siglo XX que esta matemática alemana fuera a convertirse en la artífice de la teoría que permitiría entender la conservación de la energía. Sin embargo, al morir, el mismísimo Albert Einsten llegó a definirla como “la genio creativa de las matemáticas más significativa que ha existido desde que comenzó la educación superior para las mujeres”.

Muchos sostienen que las matemáticas no volvieron a ser lo mismo después de Emmy Noether. Además de realizar grandes aportaciones al álgebra o la física, Noether fue la primera mujer en participar como ponente en un Congreso Internacional de Matemáticas. Lo hizo en 1932, mientras que la segunda, Karen K. Uhlenbeck, no lo haría hasta 1990. Durante el nazismo, Noether tuvo que trabajar en casa con sus estudiantes y finalmente abandonar Alemania para continuar su labor docente. Se refugió en Estados Unidos hasta su temprana muerte.

El ‘cíclope’ de los poliedros

¿Qué sabemos de cubos, prismas u octaedros? El matemático Leonhard Euler (1707-1783) con su fórmula para poliedros introdujo ideas precursoras de la topología. Entre otras cosas, logró establecer un patrón común para los poliedros convexos con independencia del número de caras, vértices o aristas.

A Euler le gustaron las matemáticas desde pequeño y realizó aportaciones fundamentales a la geometría analítica moderna, la trigonometría y la teoría de los números. Desarrolló el concepto de función matemática y, para ello, definió el número e (o número de Euler), la base de la función exponencial. Además, hablando de números, fue quien popularizó el número π (‘pi’ o 3,141592…). Se le conocía como el ‘cíclope matemático’ ya que perdió la visión de un ojo a los 31 años. 17 años antes de morir se quedó totalmente ciego, pero esto tampoco frenó su carrera ni sus innumerables aportaciones en diferentes campos, que llegaron a publicarse hasta cincuenta años después de su muerte.

La primera programadora

El desarrollo de nuestros ordenadores modernos tiene su origen en Ada Lovelace (1815-1852), pionera de la programación y autora del primer programa de ordenador de la historia. Apasionada de las matemáticas desde pequeña, Ada Byron se codeaba con intelectuales y celebridades como Dickens, Faraday o Darwin. En una de esas reuniones conoció a Charle Babbage, inventor de la máquina diferencial (nuestra calculadora), y con quien trabajó en la máquina analítica. En sus notas a los trabajos de Babbage, Lovelace incluyó una serie de instrucciones, consideradas el germen de la programación y los algoritmos. Para ella, “las maquinas podían ir más allá de los simples cálculos numéricos”, cosa que demostró.

A pesar de su muerte prematura a los 36 años y de que se ha tardado más de cien años en reconocer su relevancia, hoy en día es todo un referente femenino en el campo de la tecnología. Incluso cuenta actualmente con un día propio: el segundo martes de octubre se celebra el ‘Ada Lovelace Day’ para impulsar la participación de las mujeres en la ciencia.

El ‘abuelo’ de la teoría del caos

Y, para terminar, volvemos a la topología moderna de la mano de su fundador, Henri Poincaré (1854-1912), precursor de la teoría del caos. En el instituto, el francés destacó en todas las asignaturas, pero especialmente en matemáticas, como también lo hizo a lo largo de su vida. Fue nombrado miembro de la Academia de Ciencias de Francia y llegó a ser presidente de la institución en 1906.

Poincaré basaba sus resultados en principios básicos y supo de buena tinta que de los errores se aprende. Aunque llegó a publicar alrededor de 500 artículos, tuvo que destruir uno cuando ya estaba en imprenta: el artículo contenía una resolución errónea del famoso problema de los tres cuerpos (trayectoria de tres objetos atraídos por la fuerza de la gravedad). Aunque no pudo solucionar el problema, sus observaciones fueron los primeros pasos de la teoría del caos, capaz de dar respuesta a problemas antes intratables en ámbitos como la economía, la biología o la meteorología.

 

Tú también practicas aritmética modular varias veces al día

Por Mar Gulis

Que las matemáticas forman parte de la vida cotidiana es la típica frase que nos cuentan desde que empezamos la escuela y no siempre la entendemos (o se nos explica) de un modo tan claro como lo que es. Vamos a intentar explicar de un modo sencillo en este post un caso de cálculo que todo el mundo, con o sin estudios, con amor, odio o indiferencia hacia las matemáticas, con desdén o con ahínco, realizamos a cada momento, aunque en general de manera prácticamente inconsciente: la medición del tiempo. Sí, queridos y queridas lectoras, practicamos la aritmética modular más a menudo de lo que nos lavamos los dientes.

Si alguien nos preguntase la hora, seguramente le sorprenderíamos si nuestra respuesta fuese algo así como 17.607.600 horas y 30 minutos desde la fundación de Roma, o un número afín mayor si tomásemos como origen de los tiempos el momento del Big Bang. Lo normal es esperar como respuesta un número entero comprendido entre 0 y 23, a veces seguido por los minutos que correspondan, incluso los segundos si deseamos dar una información más precisa. También, con frecuencia, el intervalo de veinticuatro horas es dividido en dos de doce, añadiéndose aquello de mañana o tarde, a.m. (ante meridiam) o p.m. (post meridiam), según la terminología latina. Y es que nos movemos con comodidad en nuestro código convenido para medir el tiempo; en definitiva, la división por horas responde a una aritmética modular respecto al número 24. Aunque la medición de los años sí se suele hacer de modo lineal, la medición de los meses, semanas, horas o minutos se hace de un modo ‘circular’.

La aritmética modular se conoce en ocasiones como aritmética del reloj. / Juanedc. Flickr

La aritmética modular se conoce en ocasiones como aritmética del reloj. / Juanedc. Flickr

Fue el matemático Carl Friedrich Gauss quien introdujo en su libro Disquisitiones Arithmeticae en 1801 este sistema aritmético, que se basa en ciclos repetitivos de números y residuos (lo que también se conoce como el ‘resto’). Es decir, se construye mediante ciertas relaciones de equivalencia y congruencia (compatibles con las operaciones de suma, resta y multiplicación) entre números enteros. Así, en la aritmética modular encontramos los siguientes elementos: dividendo (a), divisor (b), cociente (q) y residuo (r).

Volvamos al caso del reloj, que es el ejemplo por excelencia de esta aritmética en bucle o circular. No es casual que la aritmética modular se denomine a veces aritmética del reloj, ya que los números ‘dan la vuelta’ tras alcanzar cierto valor llamado módulo. El día lo concebimos estructurado en un ciclo de 24 o, más comúnmente, en dos ciclos de 12. Eso significa que, por ejemplo, si ahora son las 13 horas, dentro de 20 horas no serán las 33 horas, sino las 9 horas, que sería el residuo (o dicho de otro modo, el ‘resto’). En términos matemáticos diríamos que 33 módulo 24 = 9 (33 sería el dividendo, 24 el divisor, 1 el cociente, y 9 el residuo).

Y así vamos encontrando congruencias en todas las medidas del tiempo. Por ejemplo, como hemos visto, los relojes trabajan con módulos 12 o 24 para las horas, y módulo 60 para los minutos y los segundos.

Volviendo la vista a la semana, la pregunta acerca del día en que estamos admite solo una de estas respuestas: lunes, martes, miércoles, jueves, viernes, sábado o domingo. Nunca decimos, por ejemplo, que se trate del día noningentésimo nonagésimo nono de la era cristiana. De este modo, como probablemente ya habréis imaginado, el módulo aritmético usado en el caso de los días es el 7. Por ejemplo, si hoy es viernes 7 de noviembre y alguien nos cita para el próximo viernes 22 de noviembre, sabemos que ha cometido un error, por cuanto la diferencia (22-7=15) no es un múltiplo de 7. Entre dos viernes ha de transcurrir, necesariamente, un número exacto de semanas. En el calendario, aparte del módulo 7 para los días de la semana, se utiliza el módulo 12 para los meses.

En el libro Los números (CSIC-Catarata), de Javier Cilleruelo y Antonio Córdoba, se pueden encontrar estas y otras curiosidades matemáticas. Lo más sugerente de casos como los expuestos más arriba, a la vez que paradójico, es que hay aspectos muy cotidianos que a pesar de tenerlos sumamente aprendidos e interiorizados, cuesta verlos y conceptualizarlos…