BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘luz’

Un viaje en el tiempo en busca de la luz

Por Mar Gulis (CSIC)

La luz, un fenómeno fundamental para el desarrollo de la vida en nuestro planeta, ha sido y es algo fascinante para los seres humanos, además de una importante fuente de inspiración en diversos campos como la pintura, la poesía o el arte en general, así como en diferentes disciplinas científicas.

¡Nos han robado la luz! Viaja en el tiempo con nosotr@s para recuperarla. 22 de diciembre de 2015 a las 18 horas.

‘¡Nos han robado la luz! Viaja en el tiempo con nosotr@s para recuperarla’. 22 de diciembre de 2015 a las 18 horas.

Desde fenómenos lumínicos espectaculares como los amaneceres y las puestas de Sol, los arcoíris, las auroras boreales, etc., hasta utilizaciones concretas como los rayos láser, los telescopios o las conexiones ópticas, lo cierto es que la luz y sus características no han dejado de resultar enigmáticas y sorprendentes. Así, la ciencia lleva siglos cuestionándose qué es la luz, en qué consiste la propia naturaleza de este fenómeno físico tan cotidiano y cuáles son sus posibles aplicaciones.

Es prácticamente inimaginable concebir una vida sin luz y sin todas las utilidades que provienen de ella y que facilitan la existencia en casi todas las actividades humanas. Por ello, el 20 de diciembre de 2013 la Asamblea General de las Naciones Unidas proclamaba 2015 como ‘Año Internacional de la Luz y de las tecnologías basadas en la luz’, con el objetivo de comunicar a la sociedad y poner de relieve la importancia que de la luz en áreas tan importantes como la energía, la educación, la salud, las comunicaciones, etc.

Hoy martes 22 de diciembre, a las 18 horas, en el salón de actos del CSIC en la calle Serrano, 117 (Madrid), el CSIC aprovecha los días de ocio de las vacaciones navideñas para invitar a jóvenes y mayores a participar en la actividad ‘¡Nos han robado la luz! Viaja en el tiempo con nosotr@s para recuperarla’. Con este título, un grupo de investigadores del Instituto de Óptica Daza de Valdés del CSIC pone en marcha la segunda edición de Ciencia en Navidad con una actividad de divulgación científica teatralizada para toda la familia.

Si la física cuántica protagonizaba la primera edición del evento (2014) con la sesión ‘¿Qué tienen que ver los gatos con el bosón de Higgs?’, la actividad de este año nos invita a trasladarnos a diferentes épocas, desde la Antigua Grecia hasta el futuro, para recuperar la luz y comprender sus propiedades. De este modo, Alba, una joven científica, hará un viaje en el tiempo y preguntará sobre la naturaleza de la luz a Herón de Alejandría, Newton, Huygens, Maxwell y Einstein, personajes excepcionales de este cuento de Navidad que desfilarán por escena respondiendo a las preguntas con entretenidos y vistosos experimentos lumínicos de diversa índole.

De un modo lúdico y teatralizado, en esta actividad divulgativa para todas las edades se tratarán aspectos como las leyes de reflexión, los fenómenos de absorción, emisión, refracción. Se abordará la discusión fundamental entre Newton y Huygens, en la que el primero defendía la naturaleza corpuscular de la luz, y el segundo su naturaleza ondulatoria (más tarde el físico francés De Broglie descubrirá que ambos llevaban razón). La luz como onda electromagnética, la polarización, la energía o los láseres, son otros contenidos que pasarán por esta segunda edición de Ciencia en Navidad.

Algunos de los protagonistas de ‘¡Nos han robado la luz!’ (Juan Diego Ania, Rebeca de Nalda, Pedro Corredera y Javier Solís) lo explican así en el siguiente vídeo. La obra también contará con la participación de Javier Portilla y Jaime Pérez del Val.

 

Para más información sobre la luz y sus propiedades, puedes visitar aquí la exposición ‘Un universo de luz’, así como sus unidades didácticas asociadas y diez fichas de experimentos.

¿Quieres construir un microscopio casero o crear un holograma?

Por Mar Gulis (CSIC)

Construir un microscopio casero con materiales más o menos habituales en nuestros hogares no sólo es posible sino que es fácil. Tan sólo necesitamos un poco de agua, una jeringa grande (sin aguja), cinta adhesiva, algún soporte, un puntero láser, una pinza de tender la ropa y una pared sobre la que proyectar. Hay que montar esos elementos de tal modo que la luz del puntero láser incida sobre una muestra suspendida en una gota de agua, como en el ejemplo que vemos en el dibujo.

microscopioLa muestra que queramos observar dependerá de nuestra imaginación. Puede ser nuestra saliva, el agua de una maceta o el bebedero de una mascota. La luz del puntero atravesará la gota y se reflejará en la pared, donde podremos ver el contenido de la muestra a gran tamaño, como si lo observáramos a través de un microscopio. En la imagen se podrá apreciar el movimiento de los microorganismos e incluso diferenciar algunas partes de las células.

El microscopio casero es una de las diez propuestas que se pueden realizar en casa o en el aula con las nuevas fichas de experimentos sobre la luz que ha elaborado el CSIC –con apoyo de la FECYT– en el marco del Año Internacional de la Luz, celebrado durante 2015. Estas fichas son un nuevo recurso educativo, especialmente dirigido a niños y niñas de Primaria y Secundaria, que se pone a disposición de profesores, estudiantes y familias y que complementa la exposición itinerante Un universo de Luz y sus unidades didácticas.

FichaOtro de los experimentos propone ‘crear un holograma’ con una pirámide de plástico transparente y un dispositivo móvil (teléfono o tableta), en el que reproduciremos un ‘vídeo holográfico’. Este tipo de audiovisuales están compuestos por una imagen repetida cuatro veces que genera una ilusión óptica. Lo que sucede es lo siguiente: las cuatro imágenes del vídeo proyectadas por nuestro dispositivo móvil se reflejan en los cuatro lados de la pirámide transparente que hemos construido. Como resultado vemos una imagen tridimensional en movimiento dentro de nuestra pirámide. Sin embargo, aunque lo parezca, esta imagen no es propiamente un holograma, ya que los hologramas se generan con la luz de un láser.

Con los experimentos de la luz también se puede aprender a crear un arcoíris y construir un caleidoscopio o un espectroscopio utilizando cajas de cereales, tubos de cartón y DVD viejos. ¡Descárgate las fichas de experimentos aquí!

A la caza del agujero negro en el corazón de la Vía Láctea

M. VillarPor Montserrat Villar (CSIC)*

Si pudiéramos reducir el tamaño de la Tierra al de un azucarillo, nuestro planeta se convertiría en un agujero negro. En teoría, lo mismo ocurriría con cualquier objeto siempre que contáramos con un sistema capaz de comprimirlo lo suficiente: una casa, una mesa, yo misma. Por debajo de un tamaño crítico el efecto de la gravedad será imparable: ninguna fuerza podrá impedir el colapso e inevitablemente se formará un agujero negro. Ese tamaño crítico viene determinado por el llamado ‘radio de Schwarschild’ y depende únicamente de la masa del objeto en cuestión. Es decir, conocida la masa, el radio de Schwarschild se deduce con facilidad. Para la Tierra es aproximadamente 1 centímetro, mientras que para el Sol son unos 3 kilómetros. Por tanto, si el Sol se redujera a una bola de unos 3 kilómetros de radio, nada impediría que se convirtiera en un agujero negro.

Agujero negro

Distorsión visual que observaríamos en las proximidades del agujero negro en el centro de la Vía Láctea debida a los efectos de la gravedad.

La existencia de un agujero negro en el centro de nuestra galaxia, la Vía Láctea, fue propuesta en 1971 a partir de evidencias indirectas. Las pruebas concluyentes empezaron a acumularse hacia 1995 y hoy su existencia está confirmada. ¿Cómo lo sabemos?

Para comprobarlo necesitamos determinar cuánta masa hay en el centro galáctico y el volumen que ocupa. Si es menor que el correspondiente al ‘radio de Schwarchild’, tendremos la prueba definitiva. Sin embargo, no podemos ver un agujero negro. En el interior de dicho radio (que coincide con el llamado horizonte de sucesos del agujero negro), la fuerza de la gravedad es tan intensa que nada, ni siquiera la luz, puede escapar. ¿Cómo medir la masa y el volumen de algo que no podemos ver?

Esto se ha logrado estudiando cómo se mueven las estrellas más cercanas a la localización de ese objeto invisible en el centro de nuestra galaxia, región llamada Sagitario A*. Puesto que la fuerza de la gravedad determina los movimientos de dichas estrellas, midiendo la velocidad, forma y tamaño de sus órbitas podremos inferir la masa responsable y determinar su tamaño máximo.

A mediados de la década de los 90 y durante casi veinte años se han rastreado los movimientos de unas treinta estrellas, las más próximas conocidas a Sagitario A*. Para estas observaciones astronómicas se utilizaron los mayores telescopios ópticos del mundo (telescopios VLT y Keck, en Chile y Hawai respectivamente). Así se obtuvo la visión más nítida conseguida hasta la fecha del centro de nuestra galaxia.

örbitas

Imagen generada por ordenador. Órbitas de las estrellas conocidas más próximas a Sagitario A* rastreadas a lo largo de veinte años (Keck/UCLA/A. Ghez).

La estrella más cercana a Sagitario A* tarda poco más de quince años en describir su órbita y se acerca a una distancia mínima equivalente a unas tres veces la distancia media entre el Sol y Plutón. Llega a alcanzar una velocidad de ¡18 millones de kilómetros por hora! Para explicar movimientos tan extremos se necesita una masa equivalente a cuatro millones de soles. El ‘radio de Schwarschild’ correspondiente a esta masa es de unos 13 millones de kilómetros. Medidas realizadas con técnicas diversas demuestran que ese objeto invisible ocupa un volumen con un radio de, como máximo, unos 45 millones de kilómetros; es decir, unas 3.5 veces el ‘radio de Schwarschild’. Aunque estrictamente no podemos afirmar que la masa central está contenida en un volumen inferior al de Schwarshchild, sabemos que se trata de un agujero negro. Pensemos que en un volumen menor que el que contiene al Sol y Mercurio, tendríamos que ‘empaquetar’ cuatro millones de soles. No hay explicación alternativa: nada que conozcamos puede tener una masa tan enorme y ocupar un volumen tan pequeño.

 

* Montserrat Villar es investigadora en el Centro de Astrobiología (INTA/CSIC) en el grupo de Astrofísica extragaláctica

¿Cómo se produce un espejismo?

Por Mar Gulis (CSIC)*

Una persona camina con dificultad por el desierto, sudorosa y con sed, sobre todo con mucha sed. A lo lejos ve lo que tanto lleva ansiando: agua, ¡un oasis! Pero no es agua. Es una ilusión óptica, un espejismo. Esta imagen que el cine y la televisión nos han dejado grabada, pero que también podemos haber vivido al viajar por una carretera calurosa, tiene una explicación científica más o menos sencilla. La clave está en cómo la luz se propaga por el aire.

Para entender el fenómeno de los espejismos hay que comprender cómo vemos y cómo se comporta la luz. Vemos los objetos gracias a la luz que nos llega de ellos. La luz atraviesa los diferentes medios transparentes que componen la óptica del ojo (córnea, humor acuoso, cristalino y humor vítreo) y la imagen del mundo exterior es proyectada sobre la retina. En la retina, que contiene células fotosensibles (conos y bastones), los estímulos luminosos se transforman en impulsos eléctricos que se transmiten hasta el cerebro, donde son interpretados y procesados.

Cuando la luz viaja en el vacío su velocidad es la máxima posible: 299.792.458 metros por segundo. En el aire va un poco más despacio. De hecho, si la temperatura del aire disminuye también lo hace la velocidad de la luz. Por norma general, la luz se propaga en línea recta, buscando el camino más directo entre dos puntos. Sin embargo no siempre es así, sobre todo cuando tiene que atravesar medios en los que su velocidad de propagación cambia.

La temperatura y la densidad modifican la velocidad y trayectoria de la luz /Wikipedia.

La temperatura y la densidad modifican la velocidad y trayectoria de la luz /Wikipedia.

Dependiendo de cómo incida la luz y de los medios que traviese, la dirección de la luz cambiará. Esto sucede, por ejemplo, cuando metemos un lápiz en un vaso de agua, donde se produce un cambio de densidades y de velocidad de la luz entre aire y agua. A este fenómeno se le llama refracción. Cuando la luz incide sobre la superficie de un vidrio plano y la mayor parte de ella en lugar de ser absorbida se refleja, hablamos de reflexión. Es lo que sucede con un espejo.

En un desierto o en el asfalto caliente, las capas de aire tienen diferentes temperaturas, lo cual provoca que la densidad varíe también (es más caliente y menos denso conforme nos acercamos al suelo). Cuando la luz atraviesa estas capas de aire a diferentes temperaturas y densidades, se va doblando paulatinamente y termina reflejándose, como si las capas de aire caliente cerca del suelo se comportasen como un espejo. Y así, tenemos la impresión de que objetos que están por encima de la superficie parece que están en el suelo. Como el aire es un fluido sujeto a turbulencias, estas hacen que la imagen fluctúe provocando una ilusión óptica similar a la que produce el agua. También puede ocurrir a la inversa: cuando la zona más cercana a la superficie se enfría más que el aire circundante, se puede dar un espejismo superior, un fenómeno más inusual. Cuando esto sucede, los objetos parecen flotar en el cielo.

Cartel exposición

Cartel de la exposición ‘Un universo de luz’

Las leyes de la refracción y de la reflexión no solo explican fenómenos como los espejismos, sino que también permiten diseñar y crear lentes e instrumentos ópticos capaces de proporcionar imágenes, o de concentrar la luz en determinados lugares. Precisamente, estos y otros muchos fenómenos relacionados con la luz forman parte de la exposición Un universo de luz. La muestra, que se puede ver en el Museo Nacional de Ciencia y Tecnología, en La Coruña, hasta finales de agosto, ha sido producida por el Consejo Superior de Investigaciones Científicas (CSIC) con el apoyo de la Fundación Española para la Ciencia y la Tecnología (FECYT), en el marco de la celebración en 2015 del Año Internacional de la Luz y las Tecnologías basadas en la Luz. A lo largo de 20 paneles, la exposición –que se complementa con unidades didácticas dirigidas a Educación Secundaria– trata de describir diferentes aplicaciones de la luz, resaltando su papel en la vida diaria y en la mejora de la calidad de vida de las personas.

*Esta entrada se ha elaborado a partir de los paneles de Un universo de luz. Para saber más, descárgate la exposición aquí o pídela en préstamo. También puedes seguir su itinerancia en www.csic.es.

Pero entonces… ¿qué es la luz?

José Vicente García Ramos (CSIC)*JV García Ramos

2015 es el Año Internacional de la Luz y las Tecnologías basadas en la Luz, proclamado por la ONU con el objetivo de comunicar a la sociedad la importancia de la luz y sus tecnologías asociadas, en áreas como la energía, la educación, la salud, las comunicaciones, etc.

Pero… ¿Qué es exactamente la luz? Se atribuye a Euclides, alrededor del año 300 a.C., el descubrimiento de las leyes de la reflexión de la luz, aunque no fue hasta el siglo XVII cuando, por una parte, el genial científico inglés Isaac Newton (1642-1727) y, por otra, el matemático holandés Cristian Huygens (1629-1695), desarrollaron dos teorías contrapuestas sobre la naturaleza de la luz. Newton propu­so una teoría corpuscular, mientras que Huygens suponía que era un fenómeno ondulatorio.

Jhong Dizon / Flickr

Jhong Dizon / Flickr

Para Newton la luz estaba formada por un haz de par­tículas microscópicas que denominó corpúsculos. La idea no era mala. De hecho, los rayos de luz viajan velozmente en línea recta como lo hacen los proyectiles, y cuando se encuentran un objeto, se comportan de forma no muy di­ferente a como lo hace una bala cuando rebota. Incluso lle­gó a explicar el fenómeno de la refracción, ya que la luz se refractaría, es decir, cambiaría de dirección al pasar de un medio a otro por la diferencia de velocidad de transmisión en los dos medios, como le ocurre a una pelota cuando se hunde en un hipotético tarro gigante de mermelada.

No obstante, lo realmente difícil era explicar, desde el punto de vista de los corpúsculos, otras propiedades de la luz como la difracción y las interferencias, característi­cas ambas de las ondas. De hecho, después de Newton, la consideración de la luz como una onda comenzó a abrirse camino, ya que parecía tener mucho en común con las on­das del sonido en el aire o las olas del agua del mar o de los lagos.

En realidad, la teoría más consistente era la que supo­nía Huygens, pero el gran prestigio del que gozaba Newton mantuvo la teoría ondulatoria arrinconada durante más de un siglo, hasta que los experimentos de Thomas Young (1773-1829) y Auguste Jean Fresnel (1788-1827) la co­rroboraron ya en el siglo XIX. Esto ha sucedido en bas­tantes ocasiones; las grandes figuras científicas consiguen importantes avances, pero pueden actuar como rémoras en nuevos descubrimientos. Aunque, en este caso, el tiem­po y el desarrollo de la mecánica cuántica le devolvieron a Newton parte de la razón: la luz es un fenómeno ondula­torio, está formada por ondas electromagnéticas, pero a su vez puede considerarse formada por pequeñas partículas de luz (cuantos) llamadas fotones. De esta doble naturale­za corpuscular y ondulatoria gozan todas las partículas y ondas.

Actividad en el Instituto de Óptica del CSIC durante la Semana de la Ciencia 2014.

Actividad del IOSA en el Instituto de Óptica (IO) del CSIC en la Semana de la Ciencia 2014. Juan Aballe/CSIC

Pero esto no es verdad del todo. Tanto las ondas en el agua como las ondas del sonido necesitan un material para formarse. Los físicos de la época asumieron que había un medio invisible y delgado, al que llamaron “éter luminífe­ro”, que impregnaba el universo, por lo que consideraban que las ondas luminosas eran oscilaciones dentro de esta sustancia. Pero, en 1887, Albert Michelson (1852-1931) y Edward Morley (1838-1923) montaron un experimento que no llegó a buen fin porque la hipótesis de partida era falsa, ya que no exis­tía ningún éter. Sin embargo, hay que pensar que la cosa no fue tan mal, pues existen algunas ondas que no necesitan un medio para propagarse, como aseguró Einstein en su teo­ría de la relatividad especial. En efecto, la velocidad de la luz siempre se puede medir sea cual sea el marco de refe­rencia que se elija, incluso en el vacío. De hecho, la veloci­dad de la luz en el vacío, c, es una constante universal, lo cual nos lleva a la conclusión de que la luz es una onda, pero tan especial que no necesita un medio para propagarse.

Al mismo tiempo, durante esos mismos años, los cien­tíficos comenzaban a estudiar el efecto fotoeléctrico que consiste en que, cuando la luz incide sobre ciertos obje­tos, estos liberan electrones. En principio, la teoría ondu­latoria de la luz podía explicar muy bien este efecto, ya que entre las características de las ondas está su capacidad para transportar y transferir energía. Pero los problemas comienzan cuando entramos en detalles. Si aumentamos la intensidad de la luz, se emiten más electrones, pero no cambia la energía de cada electrón. Por el contrario, si lo que aumentamos es la energía de la luz utilizada, esto es, utilizamos una luz más azul, la energía de cada electrón liberado aumenta, y aunque la intensidad de dicha luz sea baja, los electrones emitidos no tienen menos energía, lo único que ocurre es que se van liberando más lentamente.

Otra actividad del IO-CSIC

Otra actividad del IOSA en el IO-CSIC. Juan Aballe/CSIC

Estos resultados hicieron que Einstein pensara que la teoría ondulatoria no era lo bastante acertada como para describir la luz. Su propuesta fue que la luz está formada por fotones, cada uno de ellos con una energía específica que depende de la frecuencia de la luz. Los fotones chocan con los electrones de un material y los expulsan mientras les transfieren una energía igual a la energía del fotón me­nos la energía necesaria para liberarlos del material.

Esta teoría explicaba perfectamente el efecto fotoeléc­trico: una mayor intensidad de la luz significa más fotones, no más energía por fotón, que liberan más electrones, pero no con más energía por electrón. De hecho, Einstein fue galardonado con el Premio Nobel de Física en 1921 por su trabajo sobre el efecto fotoeléctrico, no por la teoría de la relatividad.

Entonces, después de todo, ¿la teoría de los fotones es la buena? Y, si es así, ¿qué pasa con el comportamiento ondulatorio de la luz? La respuesta, quizá inesperada, es que la teoría de los fotones todavía es errónea. A pesar de la descripción de los fotones como partículas que arrancan electrones de un material, los fotones no son partículas. No tienen funciones de onda mecano-cuánticas ni tampo­co tienen asignadas posiciones, ni siquiera en el cambiante sentido mecano-cuántico que dice que, por ejemplo, un protón tiene asignada en cada momento una posición.

Lo adecuado es decir que un fotón es un objeto mecano-cuántico que no es una onda ni una partícula. Evidentemente, esta conclusión no es del todo satisfactoria. Es mu­cho más fácil explicar la naturaleza de la luz en términos que nos resulten familiares, con experiencias cotidianas de ondas y de partículas, pero, al hacerlo, perderemos muchas de sus propiedades. A modo de resumen, podemos decir que la consideración de la luz como una onda puede expli­car en general sus propiedades macroscópicas, mientras que los fotones como partículas componentes de la luz explican muchas de sus propiedades microscópicas. Lo que no tene­mos que olvidar, cuando oigamos hablar a alguien de la luz como onda o como partícula, es que se trata de una aproxi­mación. La naturaleza es mucho más sutil…

* José Vicente García Ramos es investigador del Instituto de Estructura de la Materia (CSIC) y este texto es un extracto de su libro Las moléculas: cuando la luz te ayuda a vibrar (CSIC-Catarata).

¿Qué tiene que ver la nieve de tu televisor con el origen del universo?

televisor nievePor Mar Gulis

Hay que echarle algo de imaginación, pero si nos lo proponemos podemos convertir cualquier momento en el que no haya nada interesante en la televisión en una observación de los orígenes del universo. Y todo sin moverse del sofá.

Lo primero es olvidarse de los canales digitales y ponerse a sintonizar alguna frecuencia analógica, igual que en los viejos tiempos. Como después del ‘apagón analógico’ en España ninguna cadena realiza este tipo de emisiones, encontraremos algo que seguramente nos resulte familiar: la famosa nieve o ruido blanco. La mayor parte de ese ruido proviene del mismo receptor o de otras emisiones de origen humano, como las de radio. No obstante, se estima que el 1% de ese ruido está provocado por la llamada radiación cósmica, que se originó hace unos 13.700 millones de años, cuando el universo ‘acababa’ de nacer.

La radiación cósmica había sido predicha por el astrofísico de origen ruso George Gamow en 1948, pero fueron los jóvenes radioastrónomos A. Penzias y R. Wilson quienes, en 1965, recogieron la primera evidencia de este fenómeno… aunque lo hicieron de forma totalmente casual.

Penzias y Wilson habían dedicado enormes esfuerzos a ‘limpiar’ el ruido parásito y las interferencias de una antena que pretendían utilizar para captar ondas de radio emitidas por nuestra galaxia. Sin embargo, había una extraña señal de microondas en forma de silbido que no lograban hacer desaparecer por  más que limpiaran y desmontaran la antena una y otra vez.

Lo asombroso de esa señal es que parecía venir de todas partes y llegaba a todas horas. Penzias y Wilson no comprendieron la importancia de este descubrimiento hasta que contactaron con el equipo de Robert Dicke, que casualmente estaba buscando aquello de lo que ellos querían librarse solo a 50 kilómetros de su antena, en la Universidad de Princeton. El divulgador Bill Bryson cuenta que poco después la revista Astrophysical Journal publicó un artículo de Penzias y Wilson en el que describían su experiencia con el silbido y otro de Dicke que explicaba que su origen era la radiación cósmica… pero el Nobel de física de 1978 fue solo para los primeros.

Una pena por Dicke, ¿pero qué es eso de la radiación cósmica? El físico del CSIC Alberto Casas explica que su origen se remonta a cuando el universo tenía ‘solo’ 380.000 años. Hasta entonces el cosmos era una especie de ‘sopa traslúcida’, conocida como plasma, compuesta principalmente por fotones, electrones y núcleos de elementos ligeros, como el hidrógeno y el helio.

Sin embargo, en aquel momento la temperatura descendió por debajo de los 3.000 grados y los electrones (con carga negativa) se hicieron suficientemente lentos como para que los núcleos (con carga positiva) los capturaran para formar átomos neutros. Eso, a su vez, hizo que los fotones dejaran de chocar constantemente con partículas positivas y negativas y pudiesen viajar libremente y en todas las direcciones sin interrupciones… La luz, tal y como la conocemos, acababa de ‘nacer’.

Final del plasma

Lo que pasa es que esos fotones han ‘envejecido’ junto con el universo y por eso ya no nos llegan en forma de luz, sino en forma de microondas: a medida que el cosmos se ha ido expandiendo, la longitud de onda de los fotones de la radiación cósmica también lo ha hecho.

Ondas

Como resultado estos fotones, además de invisibles, se han hecho menos energéticos y más fríos: ahora, en lugar de 3.000 grados centígrados, su temperatura es de 270 bajo cero. Esto puede parecer poco pero curiosamente significa que son la calefacción del universo: si no estuvieran en todas partes, la temperatura del cosmos se encontraría en el cero absoluto, a menos 273 grados.

Sin embargo, la temperatura de la radiacón cósmica no es totalmente homogénea. Existen pequeñísimas diferencias del orden de la cienmilésimas de grado en la radiación que alcanza la Tierra desde distintas direcciones. Los fotones de esta radiación que llegan a nuestro planeta ‘justo’ ahora partieron cuando el plasma dio lugar a un universo de átomos neutros, por lo que el mapa de nuestro cielo que representa las diferencias de temperatura de la radiación cósmica constituye la ‘fotografía’ más antigua que tenemos del universo. Esas inhomogeneidades de temperatura corresponden a las diferentes densidades que tenía el plasma en aquel momento y son una enorme fuente de información para conocer cómo era el cosmos en sus primeros años de vida.

Temperatura de la radiación de fondo

Mapa del cielo representando la temperatura de la radiación de fondo. / NASA-WMAP Science Team.

Así que la próxima vez que aparezca nieve en tu televisor no pienses que no hay nada que ver. Ese ruido puede tener más contenido que la programación habitual…

 

Si quieres más ciencia para llevar sobre la radiación cósmica y la historia del universo consulta el libro El lado oscuro del universo (CSIC-Catarata), de Alberto Casas.