Entradas etiquetadas como ‘J.M. Valderrama’

Desertificación: cuando ya no hay marcha atrás

Por J.M. Valderrama (CSIC)*

Más de dos tercios del territorio español corren riesgo de desertificación. Tras esta afirmación, muchos de los lectores y lectoras pensarán que nuestro país se va a convertir en un secarral de tierras yermas y agrietadas, pero lo cierto es que esa imagen no es del todo correcta, ya que tendemos a confundir desiertos con desertificación. Mientras que un desierto es un tipo de ecosistema restringido a un territorio en el que se dan unas condiciones climáticas determinadas, la desertificación es un tipo de degradación ambiental propia de los territorios áridos, y es consecuencia de las variaciones climáticas, que se acentúan con el cambio climático, y las actividades humanas inadecuadas. Así lo especifica el artículo 1 de la Convención de Naciones Unidas de Lucha contra la Desertificación, firmada el 17 de junio de 1994, de ahí que el próximo domingo se celebre el Día Mundial de Lucha contra la Desertificación.

Este fenómeno se achaca a tres grandes motivos: el sobrepastoreo, la deforestación y las actividades agrarias inadecuadas, como el sobrecultivo y la salinización de suelos o aguas subterráneas. El abandono de las tierras de cultivo y el turismo son considerados como causas de desertificación dentro del ámbito Mediterráneo, según apuntan diversos autores. Pero, ¿cuáles son las causas de las causas? O dicho de manera más específica: ¿por qué se sobrepastorea un determinado lugar? ¿Qué lleva a intensificar el uso de las tierras de cultivo? En definitiva, ¿qué hace que las actividades humanas sean “inadecuadas”, como dice la definición oficial de desertificación?

Imagen de Tabernas, Almería. / Colin C Wheeler (CC 3.0).

El ser humano ha desarrollado estrategias para adaptarse a las zonas secas, en las que llueve poco y de manera impredecible. El truco para mantenerse en estos territorios es estar atento a las señales de escasez y adaptar las tasas de extracción de recursos (el pasto consumido, el agua extraída de los acuíferos, los árboles talados) a las de regeneración. El estereotipo que mejor refleja esta situación son los nómadas que siguen las erráticas lluvias y el pasto que brota tras su paso. Cuando la hierba se acaba, deshacen su campamento y buscan nuevos pastizales. La zona pastoreada volverá a ser productiva tras un periodo de regeneración.

En un sistema autorregulado (punto 1 en la figura) como el descrito no pueden darse episodios de desertificación. Pero más que vivir, se sobrevive. Por eso, cuando ocurre alguna perturbación que le es favorable (punto 2), el ser humano la aprovecha. Puede ser un periodo de lluvias extraordinario; o una novedad tecnológica que permita establecerse permanentemente en un territorio y vivir de un modo más desahogado e incluso con lujos hasta entonces impensables.

De repente el sistema aparenta ser más productivo (punto 3). Una subida del precio del trigo en los mercados internacionales puede convertir en un negocio redondo los rácanos campos de secano. En consecuencia, aumentan las tasas de extracción y se genera un sistema económico de mayor envergadura. Este nuevo equilibrio es muy precario, inestable. Tanto, que una vez que aparezcan las primeras señales de escasez -bien porque vuelvan las sequías o porque el ecosistema muestre los primeros síntomas de agotamiento- será necesario retraer el sistema económico a sus dimensiones originales (recorrido del punto 5 al 1). Sin embargo, puede suceder que la nueva situación haya desmantelado las antiguas vías de organización, y ya no sea posible la marcha atrás.

Estructura de los procesos de desertificación. / Los desiertos y la desertificación (CSIC-La Catarata).

En caso de mantener la sobreexplotación —porque deliberadamente se ignoran los síntomas de deterioro o porque no se perciben correctamente—, el sistema se dirige hacia unos umbrales que, a escala humana, son irreversibles como es el caso de pérdida de suelo fértil o salinización de los acuíferos. Este proceso de esquilmación en el que se sobrepasan puntos de no retorno se denomina, en el ámbito climático señalado, desertificación.

Ante la disyuntiva (punto 5) que sugiere este esquema, ¿por qué no detenemos la desertificación eligiendo la opción de regresar del punto 5 al 1 antes de que sea demasiado tarde? Hay tres razones, no necesariamente independientes, para entender -que no justificar- el camino destructivo del NO.

  1. El carácter oportunista resulta en una visión cortoplacista de la realidad. Esto implica maximizar el rendimiento económico en el menor tiempo posible, lo que no deja de ser un caso más de la Tragedia de los Comunes. Esta teoría afirma que cuando varios individuos explotan un recurso compartido limitado y actúan de manera independiente y motivados solo por el interés personal, terminan por arruinar ese recurso común, aunque a ninguno de ellos, ya sea como individuos o en conjunto, les convenga que tal destrucción suceda.
  2. La segunda explicación tiene que ver con la racionalidad limitada del ser humano, principio enunciado por el premio Nobel Herbert Simon y con la distorsión de las señales de escasez. Por un lado, nuestra mente tiende a simplificar las interacciones y elementos que componen un sistema y por otro el componente emocional interfiere en la interpretación de la información. Además, muchas veces ésta es escasa y confusa y no sabemos, a tiempo real, cual es el estado de un sistema. Puede que un acuífero se esté agotando y que al mismo tiempo los precios que se paguen por los productos que se riegan con ese recurso sean muy elevados e inciten a seguir bombeando agua.
  3. El coste de oportunidad. En muchas ocasiones la rentabilidad de las actividades alternativas a la que se realiza es tan baja que es preferible mantenerse en un uso poco productivo e insostenible. Por tanto, para aliviar la presión sobre unos recursos maltratados, han de implementarse políticas que favorezcan la versatilidad socioeconómica del lugar. El desarrollo de la industria agroalimentaria para amortiguar los períodos de crisis que afectan a los centros de producción agrícola es un buen ejemplo de esta estrategia.

Esta visión del problema incide en un hecho simple pero rotundo: la desertificación no consiste en el avance de los desiertos. El enemigo está en casa y para adelantarse al desastre, a que los paisajes empiecen a parecerse a un desierto, es necesario integrar las distintas políticas que afectan a los territorios (agricultura, gestión forestal, agua) y tratar de acoplar nuestras ambiciones a las reglas de la naturaleza. Pensemos con más amplitud de miras.

* J.M. Valderrama es investigador de la Estación Experimental de Zonas Áridas (EEZA) del CSIC y autor del libro Los desiertos y la desertificación de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y La Catarata. También escribe el blog Dando bandazos.

Cómo medir la degradación del territorio

cara2Por J.M. Valderrama (CSIC)*

La degradación del territorio es la herencia irreversible de la desertificación y solo con grandes inversiones puede recuperarse una pequeña parte del esplendor perdido. Con este panorama la mejor estrategia es la prevención, como ocurre en la mayor parte de los problemas de carácter medioambiental. Y para atajarla hay dos vías: una es el análisis de los procesos socioeconómicos que causan la desertificación y la puesta en marcha de políticas de cambio, y otra vía es la detección temprana de la degradación y su magnitud.

Según la definición de Naciones Unidas, desertificación es “la degradación de tierras en zonas áridas, semiáridas y subhúmedas secas, causada por diversos factores como las variaciones climáticas y las actividades humanas”. Además se precisa que degradación es la “reducción o pérdida de la productividad biológica o económica y de la complejidad de las tierras”.

Mapa

Mapa de condición de la tierra de la Península Ibérica para el período 2000-2010, que refleja variaciones relativas de madurez ecológica / Estación Experimental de Zonas Áridas (CSIC).

Uno de los enfoques de medición es el conocido como RUE, siglas correspondientes a Rain Use Efficiency, que significa “eficiencia de uso de la lluvia”. El concepto detrás de estas siglas es el siguiente: la cantidad de biomasa producida por cada unidad de lluvia que cae en un territorio. Por ser un poco más específicos: los kilogramos por hectárea de vegetación que se producen cada año por cada milímetro de lluvia que recibe el suelo.

En zonas áridas, donde el agua disponible es el factor limitante para la vida, la degradación del territorio se mide a partir del RUE. Este sistema ofrece un retrato bastante preciso de la condición de la tierra, ya que refleja directamente la capacidad del suelo para amortiguar la falta de agua durante los periodos secos. Con un poco de elaboración matemática es posible determinar las zonas en mejor estado y hacer un seguimiento de su tendencia.

La tecnología actual permite sistematizar este método y evaluar la degradación en grandes territorios. Mediante imágenes de satélite es posible estimar la productividad vegetal para todo el planeta. Mientras que la red de estaciones meteorológicas, cada vez más amplia, permite obtener datos directos de precipitación y temperatura.

Montaje degradación

Ejemplo de aplicación del sistema 2dRUE en una sucesión de imágenes de Google Earth de un territorio que se está degradando / M.E. Sanjúan.

Una versión avanzada de este tipo de tecnologías es 2dRUE, desarrollada en la Estación Experimental de Zonas Áridas, del CSIC.  Se trata de una metodología de bajo coste, que usa datos públicos y abiertos. Tras una maquinaria computacional compleja, ofrece al usuario mapas contrastables y con una interpretación sencilla. El primer ensayo fue realizado en la Península Ibérica y, tras los resultados, ha sido adoptada por los gobiernos español y portugués con el fin de informar a la Convención de Naciones Unidas para la Lucha Contra la Desertificación, cuya misión es vigilar y mejorar la condición de los ecosistemas. Su éxito ha sido tal, que también se ha utilizado en el Magreb, Sahel, Mozambique y el Nordeste brasileño, y en la actualidad está siendo utilizada para toda China.

*J. M. Valderrama colabora con la Estación Experimental Zonas Áridas del CSIC y escribe en el blog Dando bandazos, en el que entremezcla literatura, ciencia y viajes. 

Zonas áridas: la tercera trinchera contra el cambio climático

Por J.M. Valderrama y Francisco Domingo (CSIC)*

El papel del suelo y, más precisamente, de las cavidades subterráneas que se forman en determinados lugares con sustrato calizo, como las zonas áridas, podría resultar decisivo para el cambio global: según investigaciones llevadas a cabo por la Estación Experimental de Zonas Áridas del CSIC, una parte significativa del CO2 atmosférico podría estar confinado en almacenes subterráneos. La alteración de estos suelos podría repercutir significativamente en la cantidad de CO2 emitido a la atmósfera.

Los científicos llevan años estudiando los procesos ligados al carbono con el fin de conocer los sumideros y fuentes de CO2, cuya acumulación en la atmósfera es una de las razones del calentamiento de la Tierra. Los estudios tratan de explicar por qué el incremento anual de la concentración de este gas debido a la actividad humana parece ser la mitad del esperado, un dato que no terminaba de cuadrar a la comunidad científica, que busca con ahínco el sumidero perdido del CO2.

torres correlacion

Torre de Correlación de Remolinos en el Llano de los Juanes, Sierra de Gádor, Almería.

Los resultados de este y de otros trabajos ponen de relieve el papel fundamental de las tierras áridas. Junto a océanos y zonas forestales, representan los tres grandes ámbitos que es preciso explorar para comprender el metabolismo del planeta. Hasta muy recientemente los esfuerzos se han concentrado en océanos y zonas forestales, mientras que las regiones áridas y semiáridas son las grandes desconocidas. Trabajos como el desarrollado por el equipo de investigación del CSIC, hacen pensar en estas zonas como un tercer bastión del planeta en la lucha contra el cambio global.

Lo primero que llama la atención en las zonas áridas es la relevancia de los procesos abióticos (no biológicos) en los que está envuelto el carbono. Es decir, que el carbono que forma parte de las rocas (como por ejemplo la caliza), lejos de ser un elemento estático e inmutable, participa activamente en varios procesos geoquímicos y se moviliza en determinadas condiciones. Otro hallazgo sorprendente ha sido constatar que parte del origen del carbono del subsuelo es biológico. La compleja maraña que entrevera procesos abióticos y bióticos (biológicos), en los que juega un papel muy relevante el carbono, aún está por desenmascarar.

De manera resumida puede afirmarse que estos procesos generan CO2. Parte del gas generado se emite a la atmósfera por ventilación (por efecto del viento y cambios de presión atmosférica) y parte se almacena, incluso en capas profundas a muchos metros, pues el CO2 desciende por gravedad. El tiempo que está almacenado se desconoce, de ahí que cuando se emite se confunde con el que respiran los seres vivos en superficie.

Estos procesos se han detectado y medido gracias al establecimiento de Torres de Correlación de Remolinos, unos aparatos capaces de apreciar el intercambio neto de CO2 entre la atmósfera y la superficie terrestre. La Estación Experimental de Zonas Áridas dispone, en colaboración con grupos de las Universidades de Granada y Almería, de tres estaciones de este tipo, integradas en la red internacional FLUXNET, que cuenta con más de 500 torres de flujo repartidas por todo el mundo.

sondas

Sondas utilizadas para medir la concentración de CO2 en el suelo

El análisis de los datos que se han ido tomando mediante este y otros procedimientos empieza a revelar una serie de resultados interesantes, como el que señalábamos sobre el almacenamiento de CO2. Estos hallazgos son algunas de las piezas de un rompecabezas gigantesco que todavía hay que encajar. Mientras los investigadores se encuentran en esa fase de formular hipótesis y corroborar hechos, las torres continúan recogiendo información.

La degradación de las tierras áridas y la importancia que están revelando tener estos ecosistemas en relación con el calentamiento global hace necesario continuar investigando sobre el balance del CO2 en estas tierras.

*J. M. Valderrama colabora con la Estación Experimental Zonas Áridas del CSIC y escribe en el blog Dando bandazos, en el que entremezcla literatura, ciencia y amor a la montaña. Francisco Domingo Poveda es investigador y director de la Estación Experimental de Zonas Áridas. Los proyectos de investigación citados en esta entrada son CARBORAD (ref.CGL2011-27493) y GEOCARBO (ref. P08RNM3721), financiados por el Plan Nacional de I+D+i la Junta de Andalucía, respectivamente, y liderados por Francisco Domingo Poveda.