Entradas etiquetadas como ‘galaxias’

Canibalismo… y otras formas de interacción galáctica

Por Mariano Moles y Mar Gulis (CSIC)*

Las galaxias son sistemas de estrellas, gas y polvo encerrados en un enorme halo de materia oscura. La mayoría de ellas forman sistemas múltiples en los que viven y evolucionan. De hecho, es complicado encontrar galaxias verdaderamente aisladas, es decir, que hayan evolucionado fuera de la influencia de otras, al menos durante los últimos dos mil millones de años. La interacción de las galaxias con otras del entorno, aun si esta no es violenta ni destructiva, juega un papel esencial en sus propiedades.

Vamos a considerar tres situaciones que nos permiten visualizar, brevemente, lo que puede significar esta interacción gravitatoria para la evolución de las galaxias.

Interacción secular

En las regiones externas de los cúmulos de galaxias o de grupos dispersos, la interacción entre galaxias no es en general violenta sino que va actuando a lo largo del tiempo, produciendo transformaciones paulatinas. Incluso las galaxias que están en situación de interacción suave presentan propiedades claramente distintas a las de las galaxias aisladas en las masas, los tamaños e incluso los colores fotométricos. Las galaxias aisladas son más pequeñas, menos masivas y más azuladas.

Galaxy Cluster Abell 1689. Los cúmulos de galaxias, en tanto que entidades gobernadas por la interacción gravitatoria, son lugares ideales para estudiar la evolución de las galaxias bajo los efectos de esa interacción. / hubblesite

Galaxy Cluster Abell 1689. Los cúmulos de galaxias, en tanto que entidades gobernadas por la interacción gravitatoria, son lugares ideales para estudiar la evolución de las galaxias bajo los efectos de esa interacción. / hubblesite

Choques de galaxias

Aunque no es muy frecuente, en los cúmulos también se producen agrupamientos y hasta colisiones destructivas de galaxias. Esto suele ocurrir en las etapas iniciales de la formación de la parte central del cúmulo. Pero hay casos, como el de la galaxia IC 1182, en los que la colisión de dos galaxias se produce en etapas posteriores.

¿Qué sucede en estas colisiones galácticas? Sabemos que las estrellas por su lado y la materia oscura por el suyo solo responden a las fuerzas gravitatorias. Además, lo que podríamos llamar gas de estrellas, es decir, el conjunto de todas las estrellas con sus velocidades respectivas, es de muy baja densidad. En efecto, la distancia media entre dos estrellas es más de un millón de veces superior al tamaño medio de estas. De modo que la probabilidad de colisión entre estrellas de una galaxia es, por lo general, muy baja.

Cuando dos galaxias colisionan, sus respectivos gases de estrellas pueden pasar uno a través del otro casi inalterados salvo por efectos de larga escala cuando una de ellas es capturada por otra y empieza a orbitar en espiral a su alrededor. Entonces pueden producirse largas colas o apéndices que se extienden a gran distancia de la galaxia y que evidencian la interacción. También el gas puede ser arrancado del cuerpo de la galaxia y formar apéndices y estructuras de gran escala. Magníficas muestras de esos procesos son la galaxia que se denomina, por su forma, del renacuajo (Tadpole Galaxy), catalogada como NGC 4676; y la galaxia llamada de los ratones (Mice Galaxy).

La galaxia IC 1182 está ya en una fase avanzada del proceso de fusión. La larga cola de marea atestigua la violencia del choque. / eso

La galaxia IC 1182 está en una fase avanzada del proceso de fusión. La larga cola de marea atestigua la violencia del choque. / eso.org

Por otra parte, la interacción violenta altera fuertemente el ritmo de formación estelar de una galaxia y provoca una aceleración notable de su evolución. Quizá uno de los ejemplos más espectaculares de este proceso es el que puede apreciarse en la galaxia de las Antenas. La extensión total abarcada por las dos antenas es de casi cuatro veces la dimensión de nuestra Galaxia (Vía Láctea). En la zona central capturada por el telescopio espacial Hubble se observa una intensísima formación estelar, con más de 1.000 cúmulos jóvenes de estrellas.

El resultado final de esas grandes colisiones es una única galaxia de forma esferoidal, relajada y exhausta, evolucionando tranquilamente a medida que sus estrellas jóvenes desaparecen y las demás van envejeciendo. A veces ocurre que las colisiones no sólo dan lugar a nuevas estrellas, sino también a nuevas galaxias que se van construyendo en las colas de marea o en los aledaños de la zona más directamente afectada por la interacción. Estas galaxias, llamadas enanas de marea, por producirse en esas situaciones, se han detectado en el apéndice de IC1182 o en las colas producidas en el Quinteto de Stephan.

Canibalismo galáctico

Cuando una de las galaxias que interaccionan es mucho mayor que la otra puede ocurrir que la segunda acabe siendo engullida por la primera, sin que se produzcan los fenómenos que acabamos de ilustrar, propios de colisiones entre dos galaxias más o menos similares. Los signos de este canibalismo galáctico son mucho menos espectaculares y difíciles de detectar. Por eso el estudio de este fenómeno y su importancia para la evolución de las galaxias es reciente.

Simulación por ordenador del proceso de canibalismo: una galaxia enana está siendo desorganizada para ser luego engullida por una galaxia como la Vía Láctea. / astro.virginia.edu

Simulación por ordenador del proceso de canibalismo: una galaxia enana está siendo desorganizada para ser luego engullida por una galaxia como la Vía Láctea. / astro.virginia.edu

En nuestro Grupo Local de galaxias hay tan solo tres masivas: Andrómeda, la Vía Láctea y M33 (mucho menos masiva que las otras dos), mientras que existen cerca de 50 galaxias enanas, poco masivas, pequeñas, meros satélites de las dominantes. A lo largo de la evolución del sistema puede ocurrir que una de esas galaxias sea atrapada definitivamente por una de las masivas y acabe siendo tragada por ella. Las estrellas de la galaxia canibalizada van a constituir una corriente estelar en la galaxia grande, que solo con muy sofisticados medios se puede detectar, medir y caracterizar. Aunque de momento solo podemos conjeturarlo, ese parece ser el caso de la galaxia enana Sagitario, que podría estar siendo engullida por nuestra galaxia.

 

* Este texto está basado en contenidos del libro de la colección ¿Qué sabemos de? (Editorial CSIC – Los Libros de la Catarata) ‘El jardín de las galaxias’, escrito por Mariano Moles.

Baade y Zwicky: la extraña pareja que descubrió las estrellas supernovas

autorPor Miguel A. Pérez Torres (CSIC)*

Si el director de cine Gene Saks hubiera decidido hacer una versión de la excelente comedia La extraña pareja (1968) protagonizada por científicos, sin duda habría escogido a Walter Baade en el papel de Félix (Jack Lemmon) y a Fritz Zwicky para el de Óscar (Walter Matthau).

Fritz Zwicky (Bulgaria 1898 – EE.UU. 1974), físico especialista en materia condensada, llegó al Instituto de Tecnología de California (el famoso CalTech) en los años veinte del siglo pasado, procedente de Suiza, donde se crió y cursó estudios universitarios. Era brillante y polifacético, pero su corrosiva y neurótica personalidad, así como su arrogancia sin límites, lo convirtieron en poco más que un bufón para muchos de sus colegas.

Pareja

Walter Baade (arriba) y Fritz Zwicky (abajo).

En una ocasión, en el colmo de la arrogancia, Zwicky llegó a afirmar que él y Galileo eran las dos únicas personas que sabían utilizar correctamente un telescopio. Un ejemplo de su bufonería neurótica estaba relacionado con el fanatismo que profesaba por el deporte. No era raro encontrarlo en el suelo del recibidor del comedor de CalTech haciendo flexiones con un solo brazo, demostrando así su virilidad ante cualquiera que, en su opinión, la hubiera puesto en duda.

Asimismo, era tan agresivo y sus modales tan intimidatorios que incluso su colaborador más cercano, Walter Baade (Alemania 1893 – 1960), el otro protagonista de este artículo, y que tenía una personalidad tranquila, llegó a negarse a que lo dejaran solo con Zwicky entre las cuatro paredes de un despacho. En un más que probable acceso de paranoia, Zwicky llegó a acusar a Baade de ser nazi, lo cual era completamente falso. Y, al menos en una ocasión, Zwicky amenazó con matar a Baade, que trabajaba en el observatorio de Mount Wilson, colina arriba de Caltech, si alguna vez lo veía en el campus de su instituto.

En fin, Zwicky era un científico que la mayoría no querría tener como compañero de despacho, pero cuya brillantez y colaboración con Baade iban a resultar fundamentales para explicar la aparición de unas estrellas extremadamente brillantes, y que habían traído de cabeza a los astrónomos durante décadas.

En marzo de 1934, Baade y Zwicky enviaron dos comunicaciones a la Academia de Ciencias de los Estados Unidos que marcarían un antes y un después en la astrofísica.

En la primera de esas comunicaciones, titulada ‘On Super-novae’, los autores proponían la existencia de un nuevo tipo de estrellas ‘nova’, las ‘super-novas’. Las novas, estrellas que aumentan su brillo enormemente durante periodos típicos de días o semanas, eran conocidas al menos desde el siglo anterior, y quizá por ello habían dejado de llamar la atención de los astrónomos. La aparición de una nova excepcionalmente brillante en la nebulosa de Andrómeda, en 1885, renovó el interés de los científicos por este tipo de astros. Sin embargo, nadie había logrado explicar satisfactoriamente este fenómeno.

En su trabajo, Baade y Zwicky proponían que las supernovas eran un fenómeno general en las nebulosas (en aquella época, el término ‘galaxias’ no estaba todavía asentado). Además, estas supernovas ocurrirían con mucha menor frecuencia que las novas, de ahí que se hubieran descubierto tan pocas.

Baade y Zwicky utilizaron como supernova-patrón el objeto descubierto en 1885 en la galaxia de Andrómeda, y calcularon que su luminosidad máxima debió de ser unas 70 millones de veces la de nuestro sol, compitiendo así con la luminosidad total de una galaxia. Posiblemente, esta colosal luminosidad fue decisiva para que propusieran el nombre de ‘super-novas’.

Supernova 1994D (punto brillante en la parte inferior derecha) captada por el teloscopio Hubble. / NASA-ESA-

Supernova 1994D (punto brillante en la parte inferior derecha) captada por el teloscopio Hubble. / NASA-ESA-

La pareja también estimó que la estrella tuvo que haber perdido una fracción significativa de su masa inicial, incluso varias veces la masa del sol. La conclusión principal del trabajo era que las supernovas representaban la transición de una estrella ordinaria a un objeto con una masa mucho menor. Aunque expresada con ciertas reservas, ya que la presencia de objetos como la supernova de 1885 en Andrómeda era todavía muy escasa, la hipótesis de Baade y Zwicky se vio plenamente confirmada por observaciones y estudios posteriores.

En la segunda comunicación, titulada explícitamente ‘Cosmic Rays From Super-Novae’, Baade y Zwicky sugerían que los rayos cósmicos se producían en las supernovas (¡cuya existencia habían propuesto en la página anterior!) y explicaban satisfactoriamente las observaciones de rayos cósmicos existentes en la época.

Estos resultados habrían bastado, por sí solos, para ganarse una reputación de por vida, como así fue por otra parte. Pero la pareja fue más allá en su segundo trabajo y, “con todas las reservas”, avanzó la hipótesis de que las supernovas representaban la transición de una estrella ordinaria a una estrella de neutrones.

Hay que tener en cuenta que James Chadwick había descubierto el neutrón apenas año y medio antes, en 1932. Baade y Zwicky entendieron que ese nuevo estado de la materia en las estrellas las haría estables, pero quisieron ser especialmente cautos. Solo así también se entiende que separaran sus resultados sobre las supernovas en dos comunicaciones, en lugar de publicarlas como un único artículo.

Son muy pocos los trabajos en astrofísica que, como estos de Baade y Zwicky, presentan tantos conceptos nuevos, incluso revolucionarios, al tiempo que dan con la solución a problemas que habían permanecido largo tiempo sin respuesta satisfactoria alguna. La presentación de estos resultados en dos breves, concisos y muy claros artículos, propició su rápida difusión, no sólo entre los astrofísicos, sino también entre el público en general.

Hoy día, todos los estudiantes de astrofísica aprenden en los libros de texto que la muerte de una estrella masiva da como resultado una supernova, que a su vez deja como remanente una estrella de neutrones (o quizá un agujero negro, como hoy sabemos). También aprenden que las supernovas representan la principal fuente de rayos cósmicos en el universo. Todo esto se lo debemos a los estudios pioneros realizados por Baade y Zwicky en los años 1930. Insisto, a “Baade y Zwicky”, ya que es muy habitual citar solamente a Zwicky como la persona que realizó estas gestas científicas, algo que posiblemente se deba a su peculiar personalidad, que contrastaba con la del tranquilo y caballeroso Baade.

 

* Miguel A. Pérez Torres es investigador del CSIC en el Instituto de Astrofísica de Andalucía.

Agujeros negros, ‘monstruos’ en el centro de cada galaxia

Por Mar Gulis

El físico norteamericano John A. Wheeler acuñó en 1967 el término ‘agujero negro’ para referirse a una de las consecuencias más extrañas de las teorías de Einstein: una región del espacio que se comporta como una puerta giratoria de un solo sentido. Cualquier objeto que entre por la puerta accede al interior del agujero, pero nada, ni siquiera la luz, puede salir. Con esta analogía explica José Luis Fernández Barbón, físico teórico del CSIC, qué son estas misteriosas regiones del espacio en su libro Los agujeros negros (CSIC-Catarata).

En efecto, estos exóticos objetos ejercen una gran fascinación sobre los físicos, que han encontrado en ellos auténticas piedras filosofales de los fundamentos de la física. Aunque tienen una larga historia como posibilidad teórica, fue en los años 70 y 80 cuando los agujeros negros empezaron a formar parte del pensamiento cotidiano de los astrofísicos. Más tarde los progresos en instrumentación astronómica permitieron asomarse al mismo centro de las grandes galaxias, como nuestra Vía Láctea, proporcionando pruebas de la existencia de agujeros negros gigantes con masas equivalentes a miles de millones de soles.

La Via Láctea vista desde el desierto de Atacama

La Via Láctea vista desde el desierto de Atacama. / Google imágenes.

Antes de seguir, aclaremos varios conceptos. Las galaxias están compuestas de estrellas, gas, polvo y materia oscura, y sus dimensiones son enormes, llegando a superar los 300.000 años luz de diámetro. La galaxia a la que pertenece el Sol, la Vía Láctea, tiene 100.000 millones de estrellas y en el universo hay miles de millones de este tipo de galaxias.

Los agujeros negros pueden formarse cuando una cantidad de materia equivalente a la masa del Sol queda concentrada en una región de unos pocos kilómetros. Esto puede suceder cuando una estrella masiva estalla como supernova. Si hay más materia, digamos un millón de soles, basta que esta se concentre en una región de unos pocos millones de kilómetros, y así sucesivamente. La superficie esférica del agujero negro se llama horizonte de sucesos. Cualquier objeto que la sobrepase es engullido y no podrá dar marcha atrás en su camino. Es el punto en el que la atracción gravitacional de un agujero negro es tan fuerte que nada puede escapar de él.

Aunque no se ven directamente, diversos candidatos a agujeros negros han sido descubiertos en el universo gracias a otros objetos visibles que giran en su órbita, como por ejemplo una estrella compañera. Sin embargo, los candidatos más espectaculares están en los confines del universo. Mirando muy muy lejos se ven las galaxias tal como eran cuando el universo era mucho más joven, hasta la décima parte de su edad actual. Estas galaxias, llamadas quásares, emiten casi toda su radiación desde el mismo centro, como volcanes en erupción. La única explicación aceptada de su funcionamiento es un agujero negro gigante que se alimenta violentamente, engullendo a borbotones y emitiendo ‘salpicaduras’ que vemos como la radiación del quásar. Pero si las galaxias tenían agujeros negros gigantes en su adolescencia, deben mantenerlos en su vejez, ocultos como dragones dormidos…

Chandra's image (left) has provided evidence for a new and unexpected way for stars to form. A combination of infrared and X-ray observations indicates that a surplus of massive stars has formed from a large disk of gas around Sagittarius A* (illustration on right). According to the standard model for star formation, gas clouds from which stars form should have been ripped apart by tidal forces from the supermassive black hole. Evidently, the gravity of a dense disk of gas around Sagittarius A* offsets the tidal forces and allows stars to form. The tug-of-war between the black hole's tidal forces and the gravity of the disk has also favored the formation of a much higher proportion of massive stars than normal.

Esta imagen tomada por el satélite Chandra muestra el centro de nuestra galaxia. La flecha señala la ubicación del agujero negro, conocido como Sagitario A*, o Sgr A* de modo abreviado. / NASA/CXC/MIT/F. K. Baganoff et al.

Justo en el centro de nuestra galaxia, a solo 27.000 años luz de nosotros, hay un anillo de gases que emite radiación mientras gira a grandísimas velocidades. Fue descubierto en 1974 por los estadounidenses Bruce Balick y Robert Brown, que lo denominaron Sagittarius A*. Con el tiempo se ha comprobado que las estrellas en su vecindad trazan órbitas rapidísimas. Para que se produzcan estos fenómenos es necesario que haya en el centro galáctico una gigantesca masa de tres o cuatro millones de soles, que, según muchos científicos, sólo puede ser un agujero negro.

La hipótesis de que todas las grandes galaxias tienen un agujero negro gigante en el centro, testigo mudo de su pasado quásar, ha dejado hace tiempo de ser un ámbito limitado a los ‘pioneros’ de los años 60, como el ruso Yakov Zeldovich, el norteamericano Edwin Salpeter, o los británicos Donald Lynden-Bell y Martin Rees. Hoy, el papel de estos ‘monstruos en la vida de las galaxias es una de las áreas de trabajo esenciales en la astrofísica contemporánea.

Nuestro ‘dragón’ particular en el centro de la Vía Láctea pesa lo equivalente a cuatro millones de soles. Sin embargo, su tamaño sería relativamente pequeño en el club de los monstruos. Se estima que muchos quásares tienen agujeros negros con masas de miles de millones de soles. Incluso las estimaciones realizadas para la zona central de la galaxia Andrómeda revelan que su agujero negro podría ser unas 100 veces mayor que el nuestro. Dado que ambas galaxias están en rumbo de colisión parece claro quién llevará la voz cantante en el baile cósmico que tendrá lugar en unos 4.000 millones de años.

¿Qué pasará si el universo no frena su expansión?

AutorPor José Luis Fernández Barbón (CSIC)*

El universo se expande, sí, pero ahora sabemos que lo hace de forma acelerada. Todas las galaxias lejanas se escapan de nosotros más rápido que las cercanas, pero además lo hacen hoy más deprisa que ayer. Esto significa que, de seguir así, todas ellas acabarán por aproximarse a la velocidad de la luz, y también que hay galaxias en el universo cuya luz nunca llegará hasta nosotros. Aunque esperemos una eternidad, la fabricación constante de espacio entre medias impide que los fotones puedan completar el viaje.

Universo lejano

Campo ultraprofundo del Telescopio Hubble. La imagen recoge una colección de galaxias de las más distantes que se han logrado observar. / NASA,
ESA, S. Beckwith (STScI) y HUDF Team

Todas las consideraciones nos dicen que, en un espacio-tiempo en expansión acelerada como el que parece corresponder a nuestro universo, debe existir un horizonte de sucesos cosmológico. Desde nuestro punto de vista, ese horizonte se ve como una gigantesca esfera negra con un tamaño de unas 20.000 veces la distancia que nos separa de la galaxia de Andrómeda. Lo que sucede más allá de este horizonte siempre estará fuera del alcance de nuestros instrumentos.

Bajo la hipótesis de que la expansión acelerada se mantenga eternamente, acabaremos por tener a todas las galaxias lejanas congeladas sobre nuestro horizonte cosmológico, cada vez más tenues, hasta que los fotones de su luz sean tan débiles que no los podamos detectar. En este caso, la astronomía será poco interesante para nuestros descendientes.

Para ellos, después de fusionarse con Andrómeda, la Vía Láctea parecerá una isla solitaria en el centro de un universo vacío. Resultaría irónico que una visión ‘galactocéntrica’ acabara por imponerse miles de millones de años después de que el geocentrismo griego hubiera sido relegado por la historia. Si así fuera, vivimos en una época privilegiada, una época en la que todavía podemos echar la vista atrás y divisar las reliquias del Big Bang.

 

* José Luis Fernández Barbón es investigador del CSIC en el Instituto de Física Teórica (CSIC-UAM) y autor del libro Los agujeros negros (CSIC-Catarata).