Entradas etiquetadas como ‘EEZA’

Laboratorios virtuales para frenar la desertificación

cara2Por J.M. Valderrama*

La mejor estrategia para atajar la desertificación es anticiparse a su aparición. Si para tomar medidas esperamos a que los síntomas de degradación sean aparentes (salinización de aguas y suelos, erosión, etc.), lo más probable es que ya sea demasiado tarde para revertir la situación. Por eso, los modelos de simulación resultan una herramienta fundamental en este ámbito.

Un modelo de simulación es una réplica simplificada de un sistema real que sirve para entender su funcionamiento. En otras palabras, un laboratorio virtual en el que ensayar hipótesis y estudiar diversos escenarios.

Existen diversos modelos de este tipo, pero los más útiles a la hora de abordar problemas medioambientales como la desertificación son los llamados modelos de dinámica de sistemas (o modelos DS). Esto es así por dos razones. La primera es que, como su propio nombre indica, son dinámicos y se preocupan por generar trayectorias temporales de las variables que consideran. La segunda se debe a que aplican un enfoque sistémico, es decir, integran en un mismo esquema componentes que pertenecen a diferentes disciplinas. Esta facilidad para poner en práctica la multidisciplinariedad es particularmente relevante en la desertificación, donde la interacción entre socioeconomía y ecología es esencial para entender el problema.

Ejemplo en el que se representa una dehesa mediante un modelo DS para estudiar los problemas de erosión.


¿Cómo representar un fenómeno complejo?

Nuestra mente tiende a simplificar el mundo para comprenderlo y considera que las respuestas a los cambios son nítidas (hay una causa antes que un efecto), lineales (mucho más de una cosa da lugar a mucho más de la otra; un pequeño cambio da lugar a un pequeño cambio) y sin retardo (una cosa provoca otra de forma inmediata). Sin embargo la realidad suele ser mucho más compleja. Los modelos DS nos ayudan a representar esa complejidad estableciendo un diagrama de relaciones causa-efecto entre las variables de un sistema.

Para empezar, existen bucles de realimentación que ponen de manifiesto la confusión entre causa y efecto. Un ejemplo lírico, extraído de la canción Círculos viciosos de Joaquín Sabina, ilustra bien este aspecto:

Yo quiero bailar un son y no me deja Lucía / Yo que tú no bailaría porque está triste Ramón. / ¿Por qué está tan triste? / Porque está malito ¿Por qué está malito? / Porque está muy flaco ¿Por qué está tan flaco? / Porque tiene anemia ¿Por qué tiene anemia? / Porque come poco / ¿Por qué come poco? Porque está muy triste

Como se puede apreciar, el contenido de la primera pregunta coincide finalmente con su respuesta; la diferencia entre causa y efecto no está tan clara. Por si fuera poco, las relaciones entre variables son de carácter no lineal: inicialmente la pérdida de cubierta vegetal no afecta a la tasa de erosión, pero llega un punto en el que una pequeña pérdida de cubierta vegetal hace que se incremente muchísimo la pérdida de suelo; en este caso el porcentaje de cubierta vegetal y la erosión tienen una relación exponencial.

El tercer elemento clave son los retardos. En efecto, las relaciones causa y efecto no son automáticas, sino que muchas veces llevan tiempo. Un ejemplo relevante sobre las consecuencias de estos intervalos entre causa y efecto es el agujero de ozono. Desde la detección del problema hasta la llegada de un acuerdo en la limitación del uso de clorofluorocarbonos (que no su aplicación real) pasaron casi treinta años. Por el camino hubo unas cuantas discusiones científicas, errores en la medición del ozono y falta de compromiso entre los diversos países.

Diagrama

Nuestros modelos mentales suelen simplificar las relaciones causales como en (a). Sin embargo los mapas causales forman redes, como en (b), en las que hay retardos (R), relaciones no lineales y bucles de realimentación.

Los modelos DS están presentes en muchos campos de investigación. En la Estación Experimental de Zonas Áridas del CSIC (EEZA) venimos desarrollado este tipo de modelos desde hace años. Se han aplicado a diversos casos de desertificación en todo el mundo, estudiando la explotación de aguas subterráneas, el uso de los pastizales o la intensificación y expansión de los sistemas agrícolas. Recientemente hemos consolidado una familia de modelos para representar los cinco paisajes de la desertificación enunciados en el Programa de Acción Nacional contra la Desertificación. Dichos modelos son la base de otras herramientas que sirven como un sistema de alerta temprana para prevenir la degradación del territorio.

 

* J.M. Valderrama es colaborador de la EEZA (CSIC) y autor del blog Dando Bandazos, en el que entremezcla literatura, ciencia y viajes.

Cómo medir la degradación del territorio

cara2Por J.M. Valderrama (CSIC)*

La degradación del territorio es la herencia irreversible de la desertificación y solo con grandes inversiones puede recuperarse una pequeña parte del esplendor perdido. Con este panorama la mejor estrategia es la prevención, como ocurre en la mayor parte de los problemas de carácter medioambiental. Y para atajarla hay dos vías: una es el análisis de los procesos socioeconómicos que causan la desertificación y la puesta en marcha de políticas de cambio, y otra vía es la detección temprana de la degradación y su magnitud.

Según la definición de Naciones Unidas, desertificación es “la degradación de tierras en zonas áridas, semiáridas y subhúmedas secas, causada por diversos factores como las variaciones climáticas y las actividades humanas”. Además se precisa que degradación es la “reducción o pérdida de la productividad biológica o económica y de la complejidad de las tierras”.

Mapa

Mapa de condición de la tierra de la Península Ibérica para el período 2000-2010, que refleja variaciones relativas de madurez ecológica / Estación Experimental de Zonas Áridas (CSIC).

Uno de los enfoques de medición es el conocido como RUE, siglas correspondientes a Rain Use Efficiency, que significa “eficiencia de uso de la lluvia”. El concepto detrás de estas siglas es el siguiente: la cantidad de biomasa producida por cada unidad de lluvia que cae en un territorio. Por ser un poco más específicos: los kilogramos por hectárea de vegetación que se producen cada año por cada milímetro de lluvia que recibe el suelo.

En zonas áridas, donde el agua disponible es el factor limitante para la vida, la degradación del territorio se mide a partir del RUE. Este sistema ofrece un retrato bastante preciso de la condición de la tierra, ya que refleja directamente la capacidad del suelo para amortiguar la falta de agua durante los periodos secos. Con un poco de elaboración matemática es posible determinar las zonas en mejor estado y hacer un seguimiento de su tendencia.

La tecnología actual permite sistematizar este método y evaluar la degradación en grandes territorios. Mediante imágenes de satélite es posible estimar la productividad vegetal para todo el planeta. Mientras que la red de estaciones meteorológicas, cada vez más amplia, permite obtener datos directos de precipitación y temperatura.

Montaje degradación

Ejemplo de aplicación del sistema 2dRUE en una sucesión de imágenes de Google Earth de un territorio que se está degradando / M.E. Sanjúan.

Una versión avanzada de este tipo de tecnologías es 2dRUE, desarrollada en la Estación Experimental de Zonas Áridas, del CSIC.  Se trata de una metodología de bajo coste, que usa datos públicos y abiertos. Tras una maquinaria computacional compleja, ofrece al usuario mapas contrastables y con una interpretación sencilla. El primer ensayo fue realizado en la Península Ibérica y, tras los resultados, ha sido adoptada por los gobiernos español y portugués con el fin de informar a la Convención de Naciones Unidas para la Lucha Contra la Desertificación, cuya misión es vigilar y mejorar la condición de los ecosistemas. Su éxito ha sido tal, que también se ha utilizado en el Magreb, Sahel, Mozambique y el Nordeste brasileño, y en la actualidad está siendo utilizada para toda China.

*J. M. Valderrama colabora con la Estación Experimental Zonas Áridas del CSIC y escribe en el blog Dando bandazos, en el que entremezcla literatura, ciencia y viajes. 

Zonas áridas: la tercera trinchera contra el cambio climático

Por J.M. Valderrama y Francisco Domingo (CSIC)*

El papel del suelo y, más precisamente, de las cavidades subterráneas que se forman en determinados lugares con sustrato calizo, como las zonas áridas, podría resultar decisivo para el cambio global: según investigaciones llevadas a cabo por la Estación Experimental de Zonas Áridas del CSIC, una parte significativa del CO2 atmosférico podría estar confinado en almacenes subterráneos. La alteración de estos suelos podría repercutir significativamente en la cantidad de CO2 emitido a la atmósfera.

Los científicos llevan años estudiando los procesos ligados al carbono con el fin de conocer los sumideros y fuentes de CO2, cuya acumulación en la atmósfera es una de las razones del calentamiento de la Tierra. Los estudios tratan de explicar por qué el incremento anual de la concentración de este gas debido a la actividad humana parece ser la mitad del esperado, un dato que no terminaba de cuadrar a la comunidad científica, que busca con ahínco el sumidero perdido del CO2.

torres correlacion

Torre de Correlación de Remolinos en el Llano de los Juanes, Sierra de Gádor, Almería.

Los resultados de este y de otros trabajos ponen de relieve el papel fundamental de las tierras áridas. Junto a océanos y zonas forestales, representan los tres grandes ámbitos que es preciso explorar para comprender el metabolismo del planeta. Hasta muy recientemente los esfuerzos se han concentrado en océanos y zonas forestales, mientras que las regiones áridas y semiáridas son las grandes desconocidas. Trabajos como el desarrollado por el equipo de investigación del CSIC, hacen pensar en estas zonas como un tercer bastión del planeta en la lucha contra el cambio global.

Lo primero que llama la atención en las zonas áridas es la relevancia de los procesos abióticos (no biológicos) en los que está envuelto el carbono. Es decir, que el carbono que forma parte de las rocas (como por ejemplo la caliza), lejos de ser un elemento estático e inmutable, participa activamente en varios procesos geoquímicos y se moviliza en determinadas condiciones. Otro hallazgo sorprendente ha sido constatar que parte del origen del carbono del subsuelo es biológico. La compleja maraña que entrevera procesos abióticos y bióticos (biológicos), en los que juega un papel muy relevante el carbono, aún está por desenmascarar.

De manera resumida puede afirmarse que estos procesos generan CO2. Parte del gas generado se emite a la atmósfera por ventilación (por efecto del viento y cambios de presión atmosférica) y parte se almacena, incluso en capas profundas a muchos metros, pues el CO2 desciende por gravedad. El tiempo que está almacenado se desconoce, de ahí que cuando se emite se confunde con el que respiran los seres vivos en superficie.

Estos procesos se han detectado y medido gracias al establecimiento de Torres de Correlación de Remolinos, unos aparatos capaces de apreciar el intercambio neto de CO2 entre la atmósfera y la superficie terrestre. La Estación Experimental de Zonas Áridas dispone, en colaboración con grupos de las Universidades de Granada y Almería, de tres estaciones de este tipo, integradas en la red internacional FLUXNET, que cuenta con más de 500 torres de flujo repartidas por todo el mundo.

sondas

Sondas utilizadas para medir la concentración de CO2 en el suelo

El análisis de los datos que se han ido tomando mediante este y otros procedimientos empieza a revelar una serie de resultados interesantes, como el que señalábamos sobre el almacenamiento de CO2. Estos hallazgos son algunas de las piezas de un rompecabezas gigantesco que todavía hay que encajar. Mientras los investigadores se encuentran en esa fase de formular hipótesis y corroborar hechos, las torres continúan recogiendo información.

La degradación de las tierras áridas y la importancia que están revelando tener estos ecosistemas en relación con el calentamiento global hace necesario continuar investigando sobre el balance del CO2 en estas tierras.

*J. M. Valderrama colabora con la Estación Experimental Zonas Áridas del CSIC y escribe en el blog Dando bandazos, en el que entremezcla literatura, ciencia y amor a la montaña. Francisco Domingo Poveda es investigador y director de la Estación Experimental de Zonas Áridas. Los proyectos de investigación citados en esta entrada son CARBORAD (ref.CGL2011-27493) y GEOCARBO (ref. P08RNM3721), financiados por el Plan Nacional de I+D+i la Junta de Andalucía, respectivamente, y liderados por Francisco Domingo Poveda.