BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘divulgación científica’

“Tengo el hierro bajo”: algunas claves para prevenir la anemia

Por Mª Pilar Vaquero (CSIC)*

Te acaba de decir tu médico que tienes el hierro bajo pero que no tienes anemia y que te cuides, que hagas vida sana y que comas bien. Entonces te preguntas: ¿qué debo comer? Empiezas a buscar en internet alimentos que tengan mucho hierro y te surgirá la recomendación de comer muchas lentejas y muchos berberechos. Veamos, lo de los berberechos y otros moluscos deséchalo; los datos sobre los miligramos de hierro que contienen por cada 100 gramos se han revisado y son menores de lo que se creía. En el caso de las lentejas, como otras legumbres, efectivamente tienen un contenido de hierro apreciable pero es un tipo de hierro (no hémico) que no se absorbe muy bien, y además va asociado a la fibra. Voy a intentar orientarte, para que en tu alimentación incluyas una variedad de alimentos de origen vegetal y animal en el contexto de la dieta mediterránea y para que te protejas frente a la anemia por déficit de hierro, también llamada ferropénica.

Lentejas con chorizo

/Mariela Morales.

¿Por qué es importante prevenir la anemia ferropénica?

El hierro es un nutriente esencial para el transporte de oxígeno, al formar parte de la hemoglobina de los glóbulos rojos, y para una gran cantidad de funciones celulares.

La deficiencia de hierro es la alteración nutricional más común en el mundo, según la OMS. Afecta especialmente a los niños en intenso crecimiento y a las mujeres jóvenes, debido a las necesidades incrementadas de hierro por las pérdidas menstruales o por el embarazo. Entre las consecuencias de la falta de hierro en el organismo, cabe destacar la reducción del rendimiento en el trabajo físico e intelectual. Ya sabes, para batir marcas en el deporte y para sacar buenas notas en los exámenes hay que tener los niveles de hierro en buen estado.

/Elaboración: Belén Zapatera y Pilar Vaquero.

¿Qué hierro hay en los alimentos?

Los alimentos contienen hierro ‘no hemo’ y hierro ‘hemo’. El primero está en casi todos los alimentos, cereales, carnes, pescados, vegetales, etc. El segundo está solo en los alimentos de origen animal, por ejemplo en la carne, y se absorbe muy bien. Pero la mayor parte del hierro que ingerimos es del tipo no hémico, incluso en la carne roja es aproximadamente el 60% del hierro total.

Por tanto, es preciso considerar la cantidad de hierro que se ingiere, asumir que casi todo va a ser no hémico y conocer cómo favorecer su absorción.

Potenciadores e inhibidores de la absorción del hierro de procedencia no animal

El ácido ascórbico o vitamina C es el potenciador más potente que se conoce de la absorción del hierro. Entre los inhibidores destaca el té negro, y otros alimentos que contienen polifenoles, y los fitatos asociados a la fibra dietética.

La clave está en que la interacción positiva o negativa se produce durante la digestión, por lo que es crucial la correcta combinación de alimentos. Así, por ejemplo, la combinación en la misma comida de un guiso de legumbres, que contenga vegetales y algo de carne, y una naranja rica en vitamina C, puede constituir una buena estrategia para prevenir la deficiencia de hierro. Si te gusta el té o el café, lo ideal es tomarlos al menos dos horas separados de las comidas principales que son las que aportan la mayor cantidad de hierro.

¿Qué más puedo hacer? Recomendaciones generales 

  • Evitar dietas hipocalóricas, si no tienes sobrepeso ni obesidad. Y en el caso de estar indicada una dieta, que sea con el control del profesional sanitario correspondiente.
  • No restringir el consumo de alimentos de origen animal: carne, pescado, aves.
  • Combinar en la misma comida los alimentos que tienen hierro no hemo y fibra con estimulantes de la absorción.
  • Tomar entre horas los inhibidores de la absorción del hierro, como el té o el café.
  • Ingerir alimentos fortificados también pueden ser de utilidad En este sentido, nuestro grupo de investigación ha demostrado que la fortificación con hierro y vitamina C de un zumo de frutas es capaz de prevenir la anemia en mujeres jóvenes con deficiencia de hierro. Sin embargo, en el caso de la fortificación con hierro de alimentos de base láctea o ricos en polifenoles no se consigue que el estado del hierro mejore en dicha población.
  • Evitar donar sangre.
  • No tomar medicación, si no es por prescripción médica.
  • Acudir al médico en caso de menstruaciones excesivas, alteraciones digestivas, hemorragias, etc.

Por último, estas recomendaciones son para prevenir la anemia por falta de hierro. Lo contrario, el exceso de hierro, es relativamente frecuente, como en el caso de la hemocromatosis hereditaria, con la que sería beneficioso reducir la absorción de hierro,  y en general evitar el acúmulo de hierro en el organismo. En todo caso, cualquier situación patológica debe ser controlada por el correspondiente especialista médico.

Para más información, consulta nuestro artículo ‘Cuestionario de frecuencia de consumo de alimentos para valorar lacalidad de la dieta en la prevención de la deficiencia de hierro’.

 

* Mª Pilar Vaquero es investigadora del CSIC en el Instituto de Ciencia y Tecnología de Alimentos y Nutrición.

Ciencia en el Barrio: un proyecto para la igualdad de oportunidades

Por Mar Gulis (CSIC)

Según la última encuesta de Percepción social de la ciencia de la FECYT, cerca de un 5% de ciudadanas y ciudadanos participan en actividades de divulgación científica durante la Semana de la Ciencia y la Tecnología y hasta un 16% visita al menos una vez al año algún museo de ciencia. La mayoría de las participantes son personas que ya tienen un interés previo, muchas de ellas incluso son asiduas y otras constituyen lo que se conoce como público cautivo: alumnas y alumnos que asisten a actividades organizadas por sus centros escolares durante la jornada escolar. Incluso en estos casos, este público cautivo pertenece a institutos de secundaria habituales en las actividades que inundan cada año nuestras ciudades. La dificultad está en llegar a aquellas personas que no solo no acuden sino que ni siquiera conocen estas iniciativas.

‘Ciencia en el Barrio. Divulgación científica para el desarrollo social y la igualdad de oportunidades’ es un proyecto que busca cubrir esta laguna y facilitar el acceso a las actividades de divulgación científica a segmentos de la población que por sus características socioeconómicas hasta ahora no participaban de ellas. La iniciativa, puesta en marcha por el Consejo Superior de Investigaciones Científicas (CSIC) y que cuenta con el apoyo económico de la FECYT, se está desarrollando en cinco distritos de Madrid: Puente de Vallecas, Hortaleza, Carabanchel, Villaverde y San Blas. En ellos, a través de la colaboración de seis Institutos de Educación Secundaria de la red pública, el CSIC ha organizado cerca de medio centenar de actividades sobre temas de actualidad científica con diferentes formatos: talleres experimentales, conferencias, clubes de lectura, exposiciones y visitas guiadas a centros de investigación punteros. En su fase piloto han participado más de un millar de estudiantes de 4º de la ESO, nivel en el que el alumnado aún no ha tenido que elegir de forma definitiva el itinerario docente con la clásica separación de letras y ciencias. El resto de alumnas y alumnos del centro, así como las comunidades educativa y vecinal, también pueden participar en algunas de las actividades.

Ciencia en el Barrio

Durante un año, las chicas y los chicos han tenido la oportunidad de hablar de tú a tú con el personal investigador y técnico del CSIC; desmontar mitos y estereotipos sobre la ciencia; hacer preguntas y experimentar con todos sus sentidos. Catas de chocolate, talleres de cocina macromolecular, charlas sobre las aplicaciones de la luz o sobre cómo se forman las ideas, son algunas de las actividades en las que han participado. También han dialogado con los autores en clubes de lectura sobre libros de temas tan diversos como los neandertales, los robots o la vida de Alan Turing.

Y han sabido aprovechar la oportunidad. Han preguntado y debatido hasta dejar pasar el tiempo del recreo y alargar las horas programadas inicialmente para las actividades.

En la nueva etapa del proyecto, que comenzará este próximo abril, el CSIC aumentará el número de institutos y estudiantes implicados y fomentará la participación de las vecinas y vecinos de los distritos. Una de las principales novedades será la organización de una feria de divulgación científica en la que un grupo de chicas y chicos explicarán a otros estudiantes, familiares y vecinos los experimentos desarrollados en sus aulas con la tutela del CSIC.  Esperemos que sea la primera de muchas ferias.

 

Un viaje espacial de 20 años para descubrir si hay vida en Próxima b

Por Miguel Abril (CSIC)*

Hace solo unos meses se anunció oficialmente uno de los hitos más importantes de la astronomía de los últimos años: el descubrimiento de Próxima b, un exoplaneta parecido al nuestro con condiciones que podrían hacerlo habitable. Aunque no es, ni mucho menos, el primero descubierto con estas características, lo que hace tan especial a Próxima b es que orbita en torno a la estrella más cercana a nosotros, Próxima Centauri, a solo 4,2 años luz. La noticia hizo que el proyecto Breakthrough Starshot –una iniciativa que pretende mandar la primera sonda en viaje interestelar– cobrara un interés especial al fijar sus ojos en el exoplaneta recién descubierto como potencial objetivo.

Portada de Nature sobre el descubrimiento de Próxima b.

Pero vayamos por partes: ¿tan cerca está este nuevo exoplaneta? ¿Cuánto son cuatro años luz? Podemos visualizarlo de forma muy gráfica realizando un sencillo experimento mental: supongamos que reducimos el Sol al tamaño de un garbanzo y lo colocamos en el punto central de un campo de fútbol. En ese caso, la Tierra sería del tamaño de un grano de arena y orbitaría a un metro de distancia. Y Próxima Centauri, ¿dónde quedaría? Pues ni en el banderín de córner, ni en la portería, ni siquiera en las gradas, como podríamos pensar. Incluso en este modelo reducido Próxima Centauri queda muy lejos: no solo fuera del estadio, sino incluso de la ciudad, de la provincia y muy probablemente de la comunidad autónoma. Concretamente, a unos 270 kilómetros de distancia del garbanzo. Conclusión: no, Próxima b no está próxima (lo siento, me lo han puesto a huevo).

Entonces… ¿Qué pasa, que nadie les ha explicado esto a los responsables de Starshot? ¿Cómo pretenden mandar una sonda hasta allí si está tan lejos? Y, aunque lo consiguieran, ¿cuánto tardaría en llegar? Empecemos diciendo que la misión no enviaría una única sonda, sino un enjambre de ingenios de pequeño tamaño, bajo consumo y coste reducido, para así aumentar las posibilidades de éxito. Estas minisondas tendrían el tamaño de un chip electrónico (similar a un sello postal), aunque para impulsarlas se usarían velas de unos 2 x 2 metros, que se propulsarían usando un láser de gran potencia situado en la superficie terrestre. Según los expertos, mediante esta técnica se conseguirían velocidades del orden de… ¡un 20% de la velocidad de la luz! Así el viaje hasta Próxima b duraría algo más de veinte años y apenas cuatro después se podrían tener datos e imágenes del planetita.

Representación de cómo serían las minisondas enviadas por Breakthrough Starshot hasta Próxima b. / Wikimedia Commons.

¿Y qué pasa si lo conseguimos? ¿Encontraríamos vida en Próxima b? Pues esto es objeto de intenso debate. Hay quien dice que las enanas M como Próxima Centauri son demasiado activas para permitir que se desarrolle la vida, y que además los planetas en su zona de habitabilidad están tan cerca que presentan lo que se conoce como anclaje por marea. Es decir, que ofrecerían siempre la misma cara a la estrella (como sucede con nuestra Luna), por lo que un hemisferio tendría temperaturas abrasadoras y el otro sería un desierto congelado. Sin embargo, los defensores de la posibilidad de vida argumentan que bajo ciertas condiciones el anclaje puede no ser total, como es el caso de Mercurio, que gira sobre sí mismo tres veces por cada dos vueltas al Sol. Y que incluso con anclaje total, tal vez en la zona de transición entre el día y la noche podría haber una estrecha franja con temperaturas templadas que permitirían al menos el desarrollo de formas de vida simple… (¿En serio? ¿Vida simple en una franja estrecha? ¡Venga, Dios, que has creado cosas tan chulas como el tiranosaurio o el tigre de dientes de sable! ¡Puedes hacerlo mejor!).

Un reciente estudio de la Universidad de Cornell sugiere la biofluorescencia como posible mecanismo de defensa ante las súbitas liberaciones de radiación de alta energía que se producen en las enanas M. La biofluorescencia es un fenómeno mediante el cual determinados corales y otros organismos de nuestro planeta absorben las radiaciones ultravioleta y las transforman en longitudes de onda dentro del espectro visible. Vale, no es un tigre de dientes de sable, pero brilla por la noche. Como en Avatar. Mola.

 

*Miguel Abril es ingeniero electrónico en el Instituto de Astrofísica de Andalucía del CSIC, en Granada, y miembro del grupo de divulgación científica Big Van.

Gemelos y epigenética:  diferencias entre ‘clones’

Por Carlos Romá Mateo*

Uno de los recursos más utilizados en el cine de ciencia ficción, desde que la genética es una disciplina con cierta popularidad, es el de los clones. Para cualquier persona de a pie, un clon es un ser exactamente igual a otro, creado de manera artificial utilizando una muestra de su material genético. El cine nos muestra complejos procesos, laboratorios asombrosos y tanques llenos de líquido donde flotan, desnudos, los cuerpos de los escalofriantes clones. Pero realmente no hace falta tanto; la naturaleza está repleta de clones. Cuando una célula sufre un proceso de mitosis, se divide en dos células con idéntico material genético, de modo que todas las bacterias que ‘nacen’ a partir de una única bacteria fundadora son clones de esta última. Hasta que el efecto del azar, la selección natural o mecanismos de intercambio genético entre individuos terminen por variar significativamente la secuencia del genoma, podemos seguir hablando de clones.

Gemelos

/Eddy Van 3000. Wikimedia Commons.

Por lo tanto, clonar un humano no sería tan difícil como lo pintan en las películas: solo necesitaríamos echar mano de la primera célula en la generación del organismo (el cigoto recién fecundado), y a continuación forzar una división para separar las células subsiguientes, permitiéndoles desarrollar embriones independientes. Algo más lento y menos espectacular que los tanques de las películas, pero más factible. De hecho, lo que hemos descrito es algo tan común como lo que sucede en el desarrollo de los gemelos monocigóticos. Mismo genoma, desarrollo independiente. No debería sorprendernos que sean tan parecidos.

No obstante, desde que los científicos son capaces de indagar en las profundidades de los núcleos celulares y de leer los genomas (o porciones de ellos) de manera relativamente rápida y eficiente, las pequeñas diferencias –como diría el famoso Jules de Pulp Fiction (Quentin Tarantino, 1994)– saltan a la vista. Fenómenos intrínsecos a la sucesión de divisiones que se producen durante el desarrollo, o microcambios en el ambiente alrededor de cada feto, van sumando diferencias que a simple vista no suelen apreciarse al contemplar a los individuos una vez nacidos.

Starwars epigenética

/Carlos Pazos (molasaber.org).

Entre todos estos mecanismos diferenciadores, destaca por su tremenda actualidad el que relaciona precisamente el ambiente con la expresión génica, lo que conocemos como epigenética. Esta disciplina, que estudia la forma en que fenómenos externos a las células (y en ocasiones incluso al organismo completo) condicionan el funcionamiento de los genes en su interior, es capaz de explicar hitos críticos en el desarrollo embrionario. Además, las denominadas marcas epigenéticas, que silencian o activan segmentos génicos completos en respuesta a señales ambientales, se hallan en la base de multitud de diferencias entre individuos sanos y enfermos. Para entender mejor esto, podríamos imaginar los genes como gruesos volúmenes de información: algunos de los cuales pueden sencillamente abrirse y ser leídos y otros se encuentran cerrados por un candado que impide su lectura. En otras ocasiones, más que un candado encontramos una notita que aporta información extra, relevante para la lectura del contenido del libro. Estos candados y notitas serían las marcas epigenéticas, que modulan el efecto de los genes sobre las funciones celulares, lo que se conoce como expresión génica.

Por lo tanto, entender la epigenética está resultando una pieza clave para completar el complejo puzle que desvela la interacción entre agentes externos, modos de vida y fisiología celular. En este sentido, los gemelos casi idénticos, estos ‘clones’ naturales, suponen una magnífica oportunidad para estudiarlo.

¿Cuánto condiciona el genoma por sí mismo y cuánto aporta el ambiente para dar lugar a las diferencias observables a simple vista? Esta pregunta resume la relación entre la información contenida en los genes y su efecto final sobre el organismo; lo que los científicos llaman genotipo frente a fenotipo.

¿Por qué los gemelos sufren distintas enfermedades?

Uno de los grupos más experimentados en el estudio de los gemelos, en el contexto de la investigación sobre el cáncer, es el de Manel Esteller. Sus trabajos han desgranado el genoma de parejas de gemelos, buscando diferencias a nivel de marcas epigenéticas (lo que se viene a llamar epigenoma) que desvelen diferente predisposición a sufrir algún tipo de cáncer. O que arrojen algo de luz sobre por qué el envejecimiento acentúa las diferencias. Es una de las únicas formas de constatar si realmente hay una importante contribución de los hábitos de vida (fumar o hacer ejercicio, por ejemplo) en la regulación epigenética, algo que todavía se debate acaloradamente. A fecha de hoy, siguen presentándose resultados que se centran en analizar las marcas epigenéticas en genes implicados en enfermedades como el Parkinson o la artritis reumatoide, utilizando como sujetos de estudio hermanos gemelos. Aun presentando la misma probabilidad genética de desarrollar la enfermedad (puesto que la versión de los genes relacionados con la patología es la misma en ambos individuos), los investigadores encuentran que algunos la padecen y otros no, y esta situación coincide precisamente con una distribución de marcas epigenéticas diferente entre ambos.

Sin embargo, experimentar con humanos no suele estar bien visto, y tampoco hay tantos gemelos monocigóticos disponibles y prestos a participar en estudios de esta índole. Una cosa es correlacionar el estado patológico con alteraciones epigenéticas, y otra, encontrar la relación causal entre el ambiente y la redistribución de estas marcas en los genes. Pero las pistas están ahí. Mientras tanto, seguiremos obteniendo información muy valiosa gracias a los animales modelo. Estudios en ratones de laboratorio genéticamente idénticos permiten afinar el tiro mucho más. gattaca-cartel-lecoolvalencia

Algunos resultados parecen indicar que incluso la generación de nuevas neuronas y la estimulación de las conexiones entre ellas se ven influidas por el comportamiento. Cuando ratones genéticamente idénticos fueron criados en diferentes condiciones de enriquecimiento ambiental, aquellos en los que se promovió la exploración, la identificación de objetos nuevos y el ejercicio mental, por decirlo de alguna manera, mostraron un mayor crecimiento neuronal. La posibilidad de que la actividad cerebral, incluso en el individuo adulto, altere la regulación génica hasta el punto de potenciar el crecimiento de nuevas células, surge como una posible explicación para las diferencias cognitivas en individuos que, genéticamente, podrían considerarse clones. La base de la individualidad, la personalidad o el esquivo componente ambiental de muchas enfermedades mentales podrían estar muy influidos por los cambios epigenéticos. Aunque falta atar muchos cabos para poder aseverar esto con rotundidad, muchos estudios en materia de neurobiología van también en esta dirección y seguro que el futuro nos depara interesantes sorpresas.

Cuando se acercaba el final del Proyecto Genoma Humano, al comienzo del presente milenio, el determinismo genético poblaba la mayoría de titulares y preocupaba enormemente a la sociedad. La magnífica película Gattaca (Andrew Niccol, 1997) se hacía eco de estas preocupaciones y lanzaba la pregunta sobre cuánto influye realmente el libro de instrucciones celular en nuestro destino, y cuánto depende de cómo nos acerquemos a dicho destino a lo largo de la vida. En la actualidad, los descubrimientos epigenéticos nos llevan hacia el otro extremo. Hoy día parece que nos preocupa cómo manejamos nuestros genes, a qué agresiones los sometemos siendo adultos, y qué  influencia puede tener esto sobre la genética de nuestros descendientes. Es más que probable, como suele suceder, que las respuestas se hallen a medio camino entre ambas posturas

*Carlos Romá Mateo es el autor del libro La epigenética, de la colección de divulgación del CSIC y Los Libros de la Catarata ‘¿Qué sabemos de?’. Es investigador en la Plataforma de Investigación en Epigenética del CIBERer y la Facultad de Medicina y Odontología de la Universitat de València, y profesor en la Universidad Europea de Valencia. Además es co-creador y guionista del cómic de divulgación The OOBIK proteo-type.

¿Sabías que el flash de tu cámara puede ayudar a detectar el cáncer de retina?

Por Mar Gulis (CSIC)

Cualquiera se ha encontrado alguna vez una foto en la que los retratados aparecen con un par de círculos rojos en los ojos. Este molesto fenómeno, que ocurre cuando utilizamos el flash, tiene su origen en la fisiología del ojo y en el comportamiento de la luz, y por extraño que parezca puede utilizarse para detectar un tipo cáncer de retina, el retinoblastoma.

Efecto 'ojo rojo' en la pupila. / Liam Welch vía Unsplash.

Pupila con ‘ojo rojo’. / L. Welch vía Unsplash.

Empecemos por el principio. ¿Por qué se produce el ‘efecto ojos rojos’? Sergio Barbero, investigador del CSIC en el Instituto de Óptica, explica que la luz entra en nuestros ojos a través de la pupila, “que es el equivalente al diafragma en una cámara de fotos”. Así, cuando hay mucha luminosidad en el ambiente, la pupila se contrae para evitar el daño de un exceso de luz, mientras que si ocurre lo contrario se dilata para permitir la visión.

Tras atravesar la pupila, la luz llega al fondo del ojo, donde se encuentran la retina y la coroides. “De toda la luz incidente en la retina, la mayor parte es transformada en señal eléctrica, lo que constituye el primer paso de la visión; sin embargo, una pequeña fracción atraviesa la retina y llega hasta la coroides, que está muy vascularizada porque su función es nutrir al ojo”, señala Barbero.

“La hemoglobina, presente en la sangre de los capilares de la coroides, absorbe los componentes azules de la luz incidente y emite hacia fuera luz de color rojizo”, prosigue. “Aunque este fenómeno está siempre presente, solo es perceptible si la cantidad de luz que penetra en el ojo es lo suficientemente grande: esto ocurre cuando en el ojo entra un haz de luz repentino (por ejemplo, el flash de una cámara) en un momento en que la pupila está dilatada (en un ambiente de oscuridad)”, aclara el investigador.

Funcionamiento del fenómeno 'ojos rojos'. / Photokonnexion

Esquema del efecto ‘ojos rojos’. / Photokonnexion

En la actualidad el ‘efecto ojos rojos’ ha sido solucionado gracias a la incorporación de un segundo flash, que se dispara a la vez que se abre el diafragma de la cámara, justo inmediatamente después del primero. De esta forma, la luz del segundo flash impacta ya sobre el músculo contraído, lo cual elimina casi por completo este antiestético efecto.

Hoy, el modo ‘anti ojos rojos’ viene de serie en la mayoría de las cámaras. Sin embargo, será necesario desactivarlo si pretendemos utilizar nuestro flash como método de detección del retinoblastoma, un tumor canceroso que se desarrolla en la retina causado por la mutación en una proteína. Este tipo de tumor aparece mayoritariamente en niños pequeños y representa un 3% de los cánceres padecidos por menores de quince años.

Cuando el retinoblastoma se sitúa en los vasos sanguíneos del ojo actúa como una muralla ante el efecto del flash, lo que impide que se vea el destello rojo en ese ojo o hace que aparezca uno blanquecino. Por eso, una foto puede ‘chivarnos’ esta patología. MedlinePlus, el servicio online de la Biblioteca Nacional de Medicina de los Estados Unidos, recoge que, si la persona fotografiada aparece solo con un ojo rojo o con uno de color blanquecino, esto podría ser una señal de presencia del tumor, por lo que se debería acudir al médico.

Carteles de la campaña de prevención del retinoblastoma. / Childhood Eye Cancer Trust

Carteles de la campaña de prevención del retinoblastoma. / Childhood Eye Cancer Trust

De hecho, Childhood Eye Cancer Trust, una fundación de ayuda contra el retinoblastoma, lanzó hace un par de años una campaña de prevención basada en este efecto. La entidad colocó carteles interactivos en varias ciudades con imágenes de ojos de niños con la característica de que, si se realizaba una foto con flash sobre estas, la pupila cambiaba y reflejaba uno de los posibles síntomas.

La campaña intentaba que los padres hicieran la prueba con sus hijos. Sin embargo, si alguien se decide a seguir el consejo, debe tener claro que la fotografía no basta para tener un diagnóstico concluyente: la presencia del retinoblastoma solo puede ser confirmada por profesionales médicos mediante pruebas adicionales y exámenes.

¿Es posible el suicidio cuántico?

Por Mar Gulis (CSIC)

Revólver de 6 balas/ Simon Poter vía Flickr

Revólver de 6 balas. / Simon Poter vía Flickr.

La inmortalidad ha sido siempre una de las metas científicas más investigadas y una fuente de innumerables leyendas y mitos. A pesar de los descubrimientos en genética sobre el envejecimiento o del progreso de la computación cuántica –que según ciertas hipótesis podría ayudar a transferir nuestra mente a un ordenador y adquirir así existencia eterna–, la muerte sigue siendo una barrera para el ser humano. Esto que podría parecer una verdad universal no lo es si asumimos determinadas interpretaciones de la física cuántica. En este caso, lo imposible no es escapar de la muerte sino, al contrario, dejar de existir por completo en un universo cuántico.

La física cuántica ha generado varias de las paradojas más famosas de la historia, como la paradoja del viajero en el tiempo, según la cual una persona no podría viajar atrás en el tiempo y matar a su abuelo ya que eso impediría el propio viaje. O la paradoja del gato de Schrödinger, en la que un gato dentro de una caja con un veneno radiactivo provoca la existencia compartida de dos universos en los que el gato está a la vez muerto y vivo. Toda la mitología y las diferentes variantes de estas dos teorías han dado lugar a extensos y longevos debates sobre física. La que traemos hoy a este blog también tiene su miga para el debate.

La teoría del llamado suicidio cuántico, no muy conocida pero planteada en términos similares a las anteriores, vendría a ser una versión del gato de Schrödinger pero aplicada a la teoría de los universos paralelos o multiverso, desarrollada por el físico estadounidense Hugh Everett. El multiverso estaría formado por todos los universos paralelos creados cada vez que una persona toma una decisión, de lo que se deduce un número de universos paralelos infinito coexistiendo al mismo tiempo en realidades diferentes.

La hipótesis del suicidio cuántico, planteada por el físico teórico sueco Max Tegmark en el año 1997, podría resumirse de la siguiente manera: un individuo está sentado en una silla con un revólver cargado apuntando a su cabeza. El arma es controlada por una máquina que mide la rotación de una partícula subatómica. Cada vez que el sujeto aprieta el gatillo el revólver se accionará dependiendo del sentido en el que rota la partícula: si gira en sentido de las agujas del reloj, el arma dispara; si gira en sentido contrario, falla. Esto hace que en cada disparo el universo se divida en dos: uno en el que el sujeto muere y otro en el que vive para seguir disparando. Así, si el sujeto aprieta el gatillo seis veces consecutivas, se  habrán generado seis universos en los que muere –uno por disparo– y uno en el que sobrevive –el universo en el que el arma falló las seis veces–. La cuestión es que, por más que el sujeto siga disparando, siempre habrá un universo en el que sobrevivirá –al menos  no morirá por un disparo de bala–. Por lo tanto, el suicidio, a nivel cuántico jamás llegaría a ser total debido a la existencia de nuestra ‘versión alternativa’ inmortal.

Billete de lotería nacional/ Álvaro Ibañez vía Flickr

Billete de lotería nacional. / Álvaro Ibañez vía Flickr.

Este mismo planteamiento tiene otra versión, algo más lúdica, en la que un sujeto compra un billete de lotería. Después, se conecta a un ordenador programado para que, en caso de que el billete no resulte premiado, este le inyecte una sustancia letal. La teoría de los universos paralelos explica que surgirán tantos universos paralelos como combinaciones de billete haya en nuestra lotería: si suponemos que nuestro cupón tiene cinco cifras, en total habrá 100.000 universos diferentes. Aunque en todos menos uno el sujeto recibirá la inyección, en ese uno el sujeto seguirá vivo y además será millonario. Desde este punto de vista, no solo la inmortalidad parece inevitable sino también la posibilidad de ganar una inmensa fortuna.

Estas paradojas son una forma de representar la contradicción entre la teoría del multiverso y la llamada interpretación de Copenhague. Mientras la primera establece que cada resultado posible de una decisión o acción da lugar a universos paralelos, la ortodoxia cuántica nos dice que una vez observado el resultado este colapsa en un solo universo. El sujeto, como el gato de Schrödinger, estará vivo y muerto a la vez solo hasta que otro sujeto compruebe si ha disparado o no.

¿Quién tiene razón? El físico del CSIC Salvador Miret, autor del libro Mecánica cuántica considera que el debate resulta casi imposible de zanjar: “el problema de la teoría del multiverso es que no es falsable, es decir, no puede ser sometida a una prueba que la confirme o desmienta”. En el planteamiento de Everett, prosigue Miret, “se quiere mantener la linealidad de la teoría cuántica incluso al realizar una medida, y el precio a pagar es la creación de universos paralelos”. Parece por tanto que para seguir avanzando en el conocimiento y en nuestra vida cotidiana la mejor idea sería conformarse con  las decisiones que tomamos y dejar el multiverso para nuestro alter ego inmortal.

¿Es el higo chumbo un superalimento?

Por Tomás García Cayuela* (CSIC)Tomás García

Cuando hablamos de superalimentos, ¿a qué nos estamos refiriendo? Este concepto resulta un tanto controvertido, ya que no está muy claro qué significa exactamente. Últimamente se ha utilizado para designar aquellos alimentos con un gran contenido en compuestos bioactivos que pueden promover un beneficio para la salud (muy superior al de otros alimentos). Desde este punto de vista, y teniendo en cuenta varias evidencias científicas, podemos decir que sí, que el higo chumbo es un superalimento. Conozcamos un poquito más de cerca a este fruto y entenderéis por qué.

higo chumbo

Furto de Opuntia ficus-indica comúnmente conocida como, chumbera, tuna o nopal. /Ben_Kerckx. Pixabay.

El higo chumbo, fruto del nopal o tuna (Opuntia spp.), es una baya ovalada que tiene su origen en México y que crece en las zonas áridas y semiáridas del mundo. En España, la mayor producción se concentra en la cuenca mediterránea y las Islas Canarias. Además, se conocen más de 200 variedades de diferentes tamaños, formas y colores (blanco, púrpura, rojo, naranja, verde y amarillo), todas ellas con un sabor y aroma muy particulares.

Este fruto fue clave durante siglos en la dieta de los nativos americanos y fue ampliamente utilizado con finalidades medicinales. No es de extrañar, ya que el higo chumbo posee una gran actividad biológica gracias al contenido en compuestos antioxidantes como vitamina C, carotenoides, betalaínas, flavonoides y ácidos fenólicos, entre otros; además de fibra y minerales.

Numerosos trabajos científicos publicados en la última década describen los efectos terapéuticos y nutricionales derivados del consumo de higo chumbo, bien como pieza de fruta o bien como ingrediente alimentario incorporado en la formulación de otros alimentos. Entre estos efectos destacan la capacidad antiinflamatoria, la prevención del estrés oxidativo y de enfermedades degenerativas, la mejora de la salud intestinal, la modulación de los niveles de colesterol y el tratamiento contra la diabetes.

Uno de los fitoquímicos que presenta el higo chumbo, y que está despertando el interés tanto de la comunidad científica como del sector industrial, son las betalaínas. Estos compuestos son pigmentos hidrosolubles que le dan el color al fruto (desde el rojo-púrpura hasta el amarillo-anaranjado). Su potencial se debe a que pueden ser utilizados como colorantes naturales, además de aportar propiedades funcionales, sobre todo relacionadas con la prevención de enfermedades inflamatorias.

Opuntia ficus-indica

Planta de Opuntia ficus-indica./flrnt. Flickr.

La mejor época para comer el higo chumbo es el verano. Sin embargo, a pesar de sus beneficios para la salud, su consumo no está muy extendido en nuestro país. Y esto ocurre por varios motivos: a) el propio desconocimiento, ya que muchas personas no han visto nunca esta fruta, sobre todo las más jóvenes; b) las espinas que presenta (aunque se tenga cuidado, siempre puede clavarse alguna en las manos, por lo que su manipulación es incómoda); y c) la vida poscosecha en fresco es relativamente corta y apenas llegan a todos los mercados, limitándose al consumo local. No obstante, desde diferentes ámbitos se está tratando de fomentar la incorporación del higo chumbo a la dieta, tanto como fruta fresca, como a través de alimentos derivados (zumos, purés, mermeladas, sorbetes, etc.).

Así, diferentes iniciativas se orientan al desarrollo de nuevos alimentos e ingredientes funcionales a partir de esta fruta para obtener los mayores beneficios para la salud. Concretamente, el proyecto internacional FUNFOODEMERTEC, coordinado por el Tecnológico de Monterrey y donde participamos investigadores del CSIC, la Universidad de Lleida y la Universidad de Oregon, busca mejorar el potencial saludable y la biodisponibilidad de los compuestos bioactivos del higo chumbo mediante la aplicación de tecnologías innovadoras, como las altas presiones hidrostáticas o los pulsos eléctricos.

¿Nos queda claro, por tanto, que el higo chumbo es un superalimento o no? Al margen de esta licencia léxica, no me gustaría terminar este artículo sin recalcar que esta fruta nos nutre de una manera muy beneficiosa, así que cuando vayáis al mercado, acordaros de este post.

 

*Tomás García Cayuela realiza su actividad investigadora en el Instituto de Investigación en Ciencias de la Alimentación (CIAL), centro mixto del CSIC  y la Universidad Autónoma de Madrid, y en el Tecnológico de Monterrey (México). Además, es creador del blog de divulgación en gastronomía y ciencia El Saber Culinario.

Galois: el matemático que cambió el álgebra para siempre antes de un duelo

agatamanuelPor Manuel de León y Ágata Timón* (CSIC)

La historia de Evariste Galois (1811-1832) es una de las más novelescas de las matemáticas. Murió con tan solo 20 años, tras un duelo en el que se vio involucrado por causas que no están del todo claras: conflictos amorosos o políticos. Unas horas antes, durante la madrugada, sabiendo que podía ser su última noche, escribió la que después se llamó la teoría de Galois, un planteamiento revolucionario que cambió el álgebra para siempre.

Poco antes había dado por concluido uno de los grandes problemas de las matemáticas: la búsqueda de las soluciones para la ecuación de quinto grado. Además, para hacerlo, había creado el concepto de grupo, una estructura matemática que abrió nuevas líneas de investigación que llegan hasta nuestros días.

Evariste Galois (1811-1832).

Evariste Galois (1811-1832).

Galois nació en 1811 en un París agitado por la pérdida del poder de Napoleón en favor del rey Luis XVIII de Borbón. El movimiento liberal, inspirado por las ideas de la Revolución Francesa tomaba fuerza y se enfrentaba con los conservadores, partidarios de una monarquía dominada por la Iglesia.

La inteligencia de Galois no encajaba con las exigencias de la escuela tradicional. Fue obligado a repetir el tercer curso, después de que sus profesores le calificaran como “original, pero extraño”. Sin embargo, ese fue el momento en el que descubrió las matemáticas, y en particular, se interesó por el problema de las soluciones para la ecuación de quinto grado.

Aunque Galois no lo sabía, el matemático noruego Niels Abel había demostrado que no existe una fórmula general, que solo involucre operaciones elementales, para la ecuación. Pero quedaba una pregunta interesante abierta: ¿qué ecuaciones, de grado cinco o superior, sí se pueden resolver con una fórmula? ¿Cómo se pueden determinar?

Para resolver este enigma, Galois introdujo el concepto original de grupo, y creó una nueva rama del álgebra. Definió, para cada ecuación, una especie de código genético (el grupo de Galois), cuyas propiedades determinan si la ecuación puede resolverse con una fórmula o no. El grupo de Galois es una medida directa de las propiedades simétricas de la ecuación, que juegan un papel clave en la resolución. Sus resultados no fueron apreciados por sus coetáneos: no entendían el nuevo mundo matemático que Galois creó y usó para resolver un problema clásico.

Nota Galois

Ejemplo de las caóticas notas de Galois.

Entre tanto, su interés por la política había aumentado, y también su rebelión ante el sistema conservador. Fue detenido en varias ocasiones por ofensas a la monarquía, por llevar armas… En 1832, una vez fuera de prisión, conoció a Stephanie Potterin en la casa de convalecencia en la que ingresó por un brote de cólera. Se enamoró perdidamente, pero ella no le correspondió.

La muerte de Galois está rodeada de misterio. Parece que pudo ofender de alguna manera a Stephanie, lo que hizo que dos personas cercanas a ella provocaran el duelo que Galois no pudo ignorar, pese a que era consciente de su desventaja y del riesgo que corría. Durante la noche previa al encuentro, escribió tres cartas: la primera, a “todos los republicanos”, la segunda, a dos de sus amigos y la tercera, a su amigo matemático Auguste Chevalier, en la que presentaba un resumen del ensayo que había sido rechazado por la academia. En esta carta, esbozó lo que se conoce como teoría de Galois. En uno de los márgenes anotó esta devastadora cita: “No me queda tiempo”.

El duelo tuvo lugar el 30 de mayo de 1832. El joven matemático murió al día siguiente, por herida de bala. Chevalier se ocupó del legado matemático de Galois, y sus artículos fueron aceptados por la academia en 1843. En 1856, la teoría de Galois fue introducida en los cursos avanzados de álgebra en Francia y Alemania. Evariste Galois sigue siendo hoy una de las grandes leyendas de las matemáticas.

 

* Manuel de León y Ágata Timón son miembros del Instituto de Ciencias Matemáticas (ICMAT), centro de investigación mixto del CSIC y tres universidades madrileñas: la Universidad Autónoma de Madrid (UAM), la Universidad Carlos III de Madrid (UC3M), y la Universidad Complutense de Madrid (UCM).

Calamares gigantes, dragones y otros monstruos literarios

Por Óscar Soriano* (CSIC)

La literatura infantil y para adultos está poblada de infinidad de monstruos y seres sorprendentes. Pero, ¿cuánto hay de fantástico y cuánto de real en sus descripciones físicas y comportamientos? ¿Existe una explicación científica para estas criaturas protagonistas de historias mil veces contadas? Hablemos pues de monstruos.

Como inicio clasificaremos los seres que nos han asustado o fascinado en dos grupos: los ‘monstruos clásicos’, en los que incluiríamos a los vampiros, hombres lobo y monstruos resucitados como los zombis; y los ‘monstruos ancestrales’, donde figurarían los dragones de distintos orígenes, hombres salvajes y calamares gigantes, entre otros.

Representación de una posible transformación en hombre lobo./Wikimedia commons

Representación de una posible transformación en hombre lobo /Wikimedia commons

Los primeros son materia literaria de leyendas recientes, en general muy relacionadas con enfermedades, uso de toxinas naturales o, en definitiva, resultado de la ignorancia científica. Surgen en lugares aislados, endogámicos e insalubres, donde afecciones como la porfiria, la rabia, la licantropía (trastorno mental en que el enfermo cree ser un lobo y se comporta como tal), la hipertricosis (una enfermedad que implica un exceso de vello), o el lupus eritematoso confieren a los pacientes un aspecto terrorífico, lo que ha sido asociado a diferentes animales salvajes o totémicos.

Por ejemplo, en los monstruos de Frankenstein, el galvanismo y el mito de Prometeo influyen en la literatura gótica del s.XIX, teniendo como resultado la novela de Shelly. Por su parte, el uso de la tetraodotoxina (una potente neurotoxina extraída de peces tetraodontiformes) por los sacerdotes de vudú, principalmente en Haití, y sus efectos catalépticos y de anulación de la voluntad da lugar a la leyenda de los zombis, tan de moda en la actualidad.

Si nos fijamos ahora en los ‘monstruos ancestrales’, los más recurrentes en la literatura serían los dragones. Su origen mitológico o legendario podría tener como punto de partida las religiones, como personificación del mal (por ejemplo, en la religión judeo-cristiana), o como seres benévolos en la cultura china. También su origen puede residir en el hallazgo de fósiles o huesos desconocidos en el pasado de dinosaurios y grandes mamíferos mal identificados, o en la captura de especies marinas de aspecto serpentiforme, como la especie Regalecus glesne, muy similar a los dragones orientales.

Dos casos bien conocidos de dragones lacustres son el monstruo del lago Ness y Mokele Mbembe. Desde el punto de vista científico, consideramos absolutamente falaz su existencia, ya que, si realmente viviesen, tendrían que haberse hallado pruebas de poblaciones numerosas de individuos de estas especies. Siendo animales de respiración aérea y fácilmente observables en los lagos, que se supone son sus hábitats preferentes, dichas evidencias no habrían podido pasar desapercibidas.

La literatura del ‘misterioso habitante del lago Ness’, principalmente la infantil, y el negocio que supone mantener este tipo de leyendas desde el punto de vista mediático y turístico, hace que se perpetúe una actividad lucrativa para regiones deprimidas económicamente.

Por otro lado, la leyenda de Mokele Mbembe, que habitaría las remotas selvas del Congo, ha despertado la curiosidad de algunos científicos, diletantes y realizadores de documentales, que al rechazar la hipótesis de la pervivencia de un dinosaurio, apuntan a la posible existencia de una especie animal aún por describir.

Tampoco podemos dejar de lado el mito del hombre salvaje, que muchos entenderán mejor si lo denominamos ‘Yeti’, o mejor dicho ‘Yetis’ (Bigfoot o Sasquatch en EEUU y Canadá; Yowie en Australia; Mapinguary en Brasil; Yeren en China). Estos hombres, por llamarlos de alguna manera, están presentes en toda la geografía terrestre y muy posiblemente sean un reflejo de nuestra necesidad de búsqueda de seres similares al ser humano, o bien constituyan una reminiscencia de la existencia coetánea en tiempos pasados de varias especies de homínidos. Lo llamativo del caso es el tirón que esta leyenda ha tenido desde que se empezó a hablar del Yeti del Himalaya y de seres similares. Al igual que con el monstruo del lago Ness, los vampiros, hombres lobo, etc., los Yetis han dado para mucho, tanto en la literatura como en el cine, pero su existencia no tiene ninguna base científica.

tripulacion con el calamar editado

Participantes en la campaña ‘Proyecto Kraken. En busca del calamar gigante’ junto al primer ejemplar macho capturado en las costas asturianas / Óscar Soriano

El kraken (leyenda derivada probablemente del calamar gigante) sin duda ocupa un puesto sobresaliente en el ranking de monstruos literarios. Quizá lo más reseñable es que, siendo un animal real, sigue rodeado de misterios, en este caso científicos. Su biología y fisiología están llenas de incógnitas, como la taxonomía del género (Architeuthis), que reúne más de una veintena de especies de las que probablemente un buen número sean sinonimias. Su presencia en la mitología parece iniciarse con el mito de Escila, que es tratado en La Odisea, en La Eneida y en La metamorfosis. El kraken también aparece en obras como Los viajes de Simbad, Veinte mil leguas de viaje submarino de Verne, los libros de Wells Los invasores marinos, así como en El final de la infancia y Los mitos de Cthulhu de Lovecraft, entre otros muchos títulos.

Dentro de la leyenda y la literatura el calamar gigante se confunde con pulpos, seres de tamaño descomunal y serpientes marinas gigantescas, lo que le ha hecho ser también protagonista de un gran número de libros de literatura infantil. Su misterio biológico ha impulsado a muchos científicos y realizadores de documentales a establecer tácitamente una carrera por lograr una filmación de este fantástico y paradójico animal, que permita conocer más sobre su conducta y metabolismo. Incluso en España se han realizado campañas como ‘Proyecto Kraken. En busca del calamar gigante’ para lograr su filmación, pero hasta hoy los vanos intentos y lo costoso de estas empresas hacen que por el momento su misterio continúe.

* Óscar Soriano es investigador del Museo Nacional de Ciencias Naturales del CSIC.

¿Pueden heredarse el estrés o la pena?

Carlos Romá 70Por Carlos Romá Mateo*

Cuando comento que he escrito un libro sobre epigenética, suelo encontrarme con preguntas del tipo “¿Y eso, qué es?” o variantes como “¿Y eso qué es… la genética de Epi?”. Si da la casualidad, no obstante, de que mi interlocutor conoce el tema, lo más probable es que me pregunte si realmente nuestro modo de vida puede afectar a nuestros hijos e hijas.

EpiGenética

Este tipo de cuestiones, que han estado revoloteando en torno al concepto de epigenética durante los últimos años, son suficientes para justificar la escritura no de un libro, sino de varios. Lo malo es que la mayoría de la gente que no está familiarizada con el ámbito científico y sus metodologías no acepta demasiado bien que se le ofrezcan respuestas como “no hay todavía suficientes datos para demostrar eso”, “existe cierta controversia al respecto”, “no en todos los casos, depende” o la que aglutina y resume todas ellas: “Aún no se sabe”.

Pero vayamos al grano. ¿Qué tiene que ver la epigenética con heredar algo tan abstracto como la pena? Primero tenemos que explicar lo que es la epigenética. Intentaré hacerlo sin necesidad de escribir otro libro.

La epigenética es un tipo de modificación de los genes, esos manuales que dictan a nuestras células cómo comportarse. Los llamados mecanismos epigenéticos retocan sutilmente la información de los genes; marcan sus ‘páginas,’ a veces las encriptan o las subrayan para concretar las instrucciones que contienen. Algunos de estos mecanismos epigenéticos también silencian la transcripción de la información genética en proteínas, que son quienes ejecutan las tareas celulares. Sin embargo, todo esto lo hacen también muchas proteínas sin considerarse epigenéticas por ello. ¿Qué diferencia hay? La distinción está en que estos cambios, que nunca afectan a la secuencia de los genes (lo que podríamos denominar el DNI de un organismo, casi siempre inmutable salvo alteraciones inesperadas que llamamos mutaciones), podrían transmitirse a una nueva célula que se genere a partir de la original.

Estructura de doble hélice de la molécula de ADN. Richard Wheeler (Zephyris) en.wikipedia.

Estructura de doble hélice de la molécula de ADN. Richard Wheeler (Zephyris) en.wikipedia.

Este hecho, bastante probado, ha provocado que a los mecanismos epigenéticos se les denomine “heredables”. Y para terminar de rizar el rizo, existe una relación entre los factores ambientales que rodean a la célula y la actividad de las moléculas que median los cambios epigenéticos. Bien, pues de aquí pasamos a que corra la voz de que los efectos ambientales a los que nos vemos sujetos puedan marcar el ADN de nuestras futuras generaciones. Hay un salto de gigante en esa afirmación. Pero tampoco es gratuita.

La responsabilidad recae sobre algunos trabajos en los que se han presentado evidencias de cómo este tipo de marcas epigenéticas se encuentran acentuadas en personas que han sufrido traumas en la infancia o en los descendientes de catástrofes humanitarias, como la hambruna de Holanda de 1944. En este caso los hijos e hijas engendrados durante el conocido como “invierno del hambre” demostraron ser especialmente proclives a padecer trastornos metabólicos relacionados con el desarrollo de diabetes, obesidad o enfermedades cardiovasculares. Todos estos trabajos sugieren que las alteraciones de carácter epigenético encontradas en dichos sujetos han sido transmitidas de padres a hijos, y que además dichas alteraciones condicionan la fisiología de los descendientes y los hace más proclives a sufrir ciertos trastornos fisiológicos. Lamentablemente, estas observaciones son solo eso: observaciones, difíciles de relacionar a un nivel de causa y efecto.

Lab_mouse_baja

Photograph by Rama, Wikimedia Commons, Cc-by-sa-2.0-fr.

Más información aportan experimentos con animales de laboratorio en los que, por ejemplo, se ha demostrado que las ratas que padecen un  comportamiento poco cariñoso al ser cuidadas por sus madres desarrollan alteraciones neurológicas, relacionadas también con modificaciones epigenéticas en genes específicos. O aquellos en los que la estimulación de circuitos neuronales que responden ante un peligro concreto provoca un cambio epigenético en torno a genes relacionados con el estrés y la respuesta al peligro. Este asombroso efecto se observó, por ejemplo, en roedores que parecían “heredar” el miedo de sus progenitores ante cierto olor. Todos esos trabajos apuntan a una relación firme entre la epigenética y la fisiología celular de la descendencia, pero siguen en el punto de mira para ser confirmados, replicados, y, no digamos ya, extrapolados al caso de los seres humanos.

Por el momento, los trabajos que más refuerzan la posibilidad de que se puedan dar estas herencias epigenéticas en humanos apuntan a modificaciones en el ADN de las células germinales, las células precursoras de los óvulos y los espermatozoides. Sin embargo, sigue siendo un misterio cómo estas marcas se mantienen tras la fecundación y el complejo proceso de “reinicio” genético que se produce al fusionarse ambos gametos.

Y ahí radica la belleza de todo el asunto. No hay nada de decepcionante en las respuestas del tipo “aún no se sabe”. El hecho de que nuestra biología todavía contenga inquietantes sorpresas es estimulante, y nos anima a seguir estudiándola con la esperanza no sólo de vivir más sanos, sino de entendernos mejor y de anticipar el futuro de nuestra especie. Cuanto más indagamos dentro de las células, por encima y alrededor del ADN que constituye nuestros genes, más interrogantes descubrimos. Y siempre que surge un interrogante, se abre la puerta a nuevos conocimientos y caminos sin transitar. Sin duda, se trata de una de las aventuras exploratorias más emocionantes de la historia humana.

 

Carlos Romá Mateo es el autor del libro La epigenética, de la colección de divulgación del CSIC y Los Libros de la Catarata ‘¿Qué sabemos de?’. Es investigador en la Plataforma de Investigación en Epigenética del CIBERer y la Facultad de Medicina y Odontología de la Universitat de València. Además es co-creador y guionista del cómic de divulgación The OOBIK proteo-type.