BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Entradas etiquetadas como ‘CSIC. cultura científica’

Desertificación: cuando ya no hay marcha atrás

Por J.M. Valderrama (CSIC)*

Más de dos tercios del territorio español corren riesgo de desertificación. Tras esta afirmación, muchos de los lectores y lectoras pensarán que nuestro país se va a convertir en un secarral de tierras yermas y agrietadas, pero lo cierto es que esa imagen no es del todo correcta, ya que tendemos a confundir desiertos con desertificación. Mientras que un desierto es un tipo de ecosistema restringido a un territorio en el que se dan unas condiciones climáticas determinadas, la desertificación es un tipo de degradación ambiental propia de los territorios áridos, y es consecuencia de las variaciones climáticas, que se acentúan con el cambio climático, y las actividades humanas inadecuadas. Así lo especifica el artículo 1 de la Convención de Naciones Unidas de Lucha contra la Desertificación, firmada el 17 de junio de 1994, de ahí que el próximo domingo se celebre el Día Mundial de Lucha contra la Desertificación.

Este fenómeno se achaca a tres grandes motivos: el sobrepastoreo, la deforestación y las actividades agrarias inadecuadas, como el sobrecultivo y la salinización de suelos o aguas subterráneas. El abandono de las tierras de cultivo y el turismo son considerados como causas de desertificación dentro del ámbito Mediterráneo, según apuntan diversos autores. Pero, ¿cuáles son las causas de las causas? O dicho de manera más específica: ¿por qué se sobrepastorea un determinado lugar? ¿Qué lleva a intensificar el uso de las tierras de cultivo? En definitiva, ¿qué hace que las actividades humanas sean “inadecuadas”, como dice la definición oficial de desertificación?

Imagen de Tabernas, Almería. / Colin C Wheeler (CC 3.0).

El ser humano ha desarrollado estrategias para adaptarse a las zonas secas, en las que llueve poco y de manera impredecible. El truco para mantenerse en estos territorios es estar atento a las señales de escasez y adaptar las tasas de extracción de recursos (el pasto consumido, el agua extraída de los acuíferos, los árboles talados) a las de regeneración. El estereotipo que mejor refleja esta situación son los nómadas que siguen las erráticas lluvias y el pasto que brota tras su paso. Cuando la hierba se acaba, deshacen su campamento y buscan nuevos pastizales. La zona pastoreada volverá a ser productiva tras un periodo de regeneración.

En un sistema autorregulado (punto 1 en la figura) como el descrito no pueden darse episodios de desertificación. Pero más que vivir, se sobrevive. Por eso, cuando ocurre alguna perturbación que le es favorable (punto 2), el ser humano la aprovecha. Puede ser un periodo de lluvias extraordinario; o una novedad tecnológica que permita establecerse permanentemente en un territorio y vivir de un modo más desahogado e incluso con lujos hasta entonces impensables.

De repente el sistema aparenta ser más productivo (punto 3). Una subida del precio del trigo en los mercados internacionales puede convertir en un negocio redondo los rácanos campos de secano. En consecuencia, aumentan las tasas de extracción y se genera un sistema económico de mayor envergadura. Este nuevo equilibrio es muy precario, inestable. Tanto, que una vez que aparezcan las primeras señales de escasez -bien porque vuelvan las sequías o porque el ecosistema muestre los primeros síntomas de agotamiento- será necesario retraer el sistema económico a sus dimensiones originales (recorrido del punto 5 al 1). Sin embargo, puede suceder que la nueva situación haya desmantelado las antiguas vías de organización, y ya no sea posible la marcha atrás.

Estructura de los procesos de desertificación. / Los desiertos y la desertificación (CSIC-La Catarata).

En caso de mantener la sobreexplotación —porque deliberadamente se ignoran los síntomas de deterioro o porque no se perciben correctamente—, el sistema se dirige hacia unos umbrales que, a escala humana, son irreversibles como es el caso de pérdida de suelo fértil o salinización de los acuíferos. Este proceso de esquilmación en el que se sobrepasan puntos de no retorno se denomina, en el ámbito climático señalado, desertificación.

Ante la disyuntiva (punto 5) que sugiere este esquema, ¿por qué no detenemos la desertificación eligiendo la opción de regresar del punto 5 al 1 antes de que sea demasiado tarde? Hay tres razones, no necesariamente independientes, para entender -que no justificar- el camino destructivo del NO.

  1. El carácter oportunista resulta en una visión cortoplacista de la realidad. Esto implica maximizar el rendimiento económico en el menor tiempo posible, lo que no deja de ser un caso más de la Tragedia de los Comunes. Esta teoría afirma que cuando varios individuos explotan un recurso compartido limitado y actúan de manera independiente y motivados solo por el interés personal, terminan por arruinar ese recurso común, aunque a ninguno de ellos, ya sea como individuos o en conjunto, les convenga que tal destrucción suceda.
  2. La segunda explicación tiene que ver con la racionalidad limitada del ser humano, principio enunciado por el premio Nobel Herbert Simon y con la distorsión de las señales de escasez. Por un lado, nuestra mente tiende a simplificar las interacciones y elementos que componen un sistema y por otro el componente emocional interfiere en la interpretación de la información. Además, muchas veces ésta es escasa y confusa y no sabemos, a tiempo real, cual es el estado de un sistema. Puede que un acuífero se esté agotando y que al mismo tiempo los precios que se paguen por los productos que se riegan con ese recurso sean muy elevados e inciten a seguir bombeando agua.
  3. El coste de oportunidad. En muchas ocasiones la rentabilidad de las actividades alternativas a la que se realiza es tan baja que es preferible mantenerse en un uso poco productivo e insostenible. Por tanto, para aliviar la presión sobre unos recursos maltratados, han de implementarse políticas que favorezcan la versatilidad socioeconómica del lugar. El desarrollo de la industria agroalimentaria para amortiguar los períodos de crisis que afectan a los centros de producción agrícola es un buen ejemplo de esta estrategia.

Esta visión del problema incide en un hecho simple pero rotundo: la desertificación no consiste en el avance de los desiertos. El enemigo está en casa y para adelantarse al desastre, a que los paisajes empiecen a parecerse a un desierto, es necesario integrar las distintas políticas que afectan a los territorios (agricultura, gestión forestal, agua) y tratar de acoplar nuestras ambiciones a las reglas de la naturaleza. Pensemos con más amplitud de miras.

* J.M. Valderrama es investigador de la Estación Experimental de Zonas Áridas (EEZA) del CSIC y autor del libro Los desiertos y la desertificación de la colección ¿Qué sabemos de?, disponible en la Editorial CSIC y La Catarata. También escribe el blog Dando bandazos.

Ciencia en el Barrio: un proyecto para la igualdad de oportunidades

Por Mar Gulis (CSIC)

Según la última encuesta de Percepción social de la ciencia de la FECYT, cerca de un 5% de ciudadanas y ciudadanos participan en actividades de divulgación científica durante la Semana de la Ciencia y la Tecnología y hasta un 16% visita al menos una vez al año algún museo de ciencia. La mayoría de las participantes son personas que ya tienen un interés previo, muchas de ellas incluso son asiduas y otras constituyen lo que se conoce como público cautivo: alumnas y alumnos que asisten a actividades organizadas por sus centros escolares durante la jornada escolar. Incluso en estos casos, este público cautivo pertenece a institutos de secundaria habituales en las actividades que inundan cada año nuestras ciudades. La dificultad está en llegar a aquellas personas que no solo no acuden sino que ni siquiera conocen estas iniciativas.

‘Ciencia en el Barrio. Divulgación científica para el desarrollo social y la igualdad de oportunidades’ es un proyecto que busca cubrir esta laguna y facilitar el acceso a las actividades de divulgación científica a segmentos de la población que por sus características socioeconómicas hasta ahora no participaban de ellas. La iniciativa, puesta en marcha por el Consejo Superior de Investigaciones Científicas (CSIC) y que cuenta con el apoyo económico de la FECYT, se está desarrollando en cinco distritos de Madrid: Puente de Vallecas, Hortaleza, Carabanchel, Villaverde y San Blas. En ellos, a través de la colaboración de seis Institutos de Educación Secundaria de la red pública, el CSIC ha organizado cerca de medio centenar de actividades sobre temas de actualidad científica con diferentes formatos: talleres experimentales, conferencias, clubes de lectura, exposiciones y visitas guiadas a centros de investigación punteros. En su fase piloto han participado más de un millar de estudiantes de 4º de la ESO, nivel en el que el alumnado aún no ha tenido que elegir de forma definitiva el itinerario docente con la clásica separación de letras y ciencias. El resto de alumnas y alumnos del centro, así como las comunidades educativa y vecinal, también pueden participar en algunas de las actividades.

Ciencia en el Barrio

Durante un año, las chicas y los chicos han tenido la oportunidad de hablar de tú a tú con el personal investigador y técnico del CSIC; desmontar mitos y estereotipos sobre la ciencia; hacer preguntas y experimentar con todos sus sentidos. Catas de chocolate, talleres de cocina macromolecular, charlas sobre las aplicaciones de la luz o sobre cómo se forman las ideas, son algunas de las actividades en las que han participado. También han dialogado con los autores en clubes de lectura sobre libros de temas tan diversos como los neandertales, los robots o la vida de Alan Turing.

Y han sabido aprovechar la oportunidad. Han preguntado y debatido hasta dejar pasar el tiempo del recreo y alargar las horas programadas inicialmente para las actividades.

En la nueva etapa del proyecto, que comenzará este próximo abril, el CSIC aumentará el número de institutos y estudiantes implicados y fomentará la participación de las vecinas y vecinos de los distritos. Una de las principales novedades será la organización de una feria de divulgación científica en la que un grupo de chicas y chicos explicarán a otros estudiantes, familiares y vecinos los experimentos desarrollados en sus aulas con la tutela del CSIC.  Esperemos que sea la primera de muchas ferias.

 

Peces macho que se embarazan

Por Miquel Planas Oliver (CSIC) *

Este pez macho está cuidando a su prole. El entregado padre es un ejemplar de bocón (Opistoganathus sp.) y permanecerá así, con la boca llena de huevos y sin ingerir alimento, hasta que estos eclosionen, un mes después de introducirlos en su cavidad bucal.

Crianza compartida o conciliación pueden parecer términos fuera de contexto si hablamos de peces, pero el mundo animal nos ofrece casos excepcionales y sorprendentes, también bajo el agua.  En la reproducción de los peces, que en su mayoría es ovípara, las hembras suelen aportar tanto los cuidados como los nutrientes a los huevos y embriones, dejando al macho el papel de mero fecundador. Sin embargo, existen estrategias reproductivas en las que ellos desempeñan un rol primordial, especialmente en lo referente al cuidado de la descendencia. Para ello, la evolución ha dotado a los machos de algunas especies de comportamientos e incluso de estructuras corporales especiales que permiten niveles más o menos complejos de protección.

Junto al bocón que aparece en el vídeo, otro de los casos más curiosos es el pez cardenal (Pterapogon kauderni) de las Islas Banggai (Indonesia), uno de los mejores papás de todo el mundo animal. El pez cardenal no solo mantiene en su boca los huevos hasta que eclosionan como hace el bocón, sino que además las crías permanecen allí hasta que tienen un desarrollo suficiente para afrontar una vida llena de peligros en el ancho mar.

El cuidado bucal de los huevos tiene sus ventajas, especialmente para asegurar la descendencia en especies que producen pocos huevos (unas decenas o centenares frente a los miles de una puesta de otros peces), aunque a veces es inevitable que el padre trague algún huevo sin querer.

Macho Hippocampus guttulatus

Macho de caballito de mar recién apareado. En la imagen aparecen algunos huevos que no entraron en el saco/Miquel Planas

Pero sin duda los reyes acuáticos de la protección son los caballitos de mar (Hippocampus sp.). Los machos presentan un saco incubador al final del abdomen en el que las hembras depositan los huevos en el momento del apareamiento. Al entrar en el saco, los machos los fertilizan con su esperma y se inicia el desarrollo embrionario. Durante todo el tiempo en que los embriones se encuentran en el interior del saco, de dos a cuatro semanas, el macho protege físicamente a la prole y aporta un ambiente fluido adecuado, oxígeno, nutrientes y otros componentes bioquímicos. Al final de ese período las crías de caballito de mar son expulsadas al exterior mediante una serie de convulsiones, como si de un parto se tratara.

Los parientes del caballito de mar, como algunos peces pipa o los dragones de mar (pertenecientes al grupo de los  singnátidos), son menos sofisticados, pero también en estas especies el macho ejerce como cuidador. Las hembras depositan los huevos en la parte inferior del abdomen o de la cola del macho, quedando fijados mediante un fluido denso hasta que emergen los futuros pececitos.

En el caso del pez espinoso (Gasterosteus aculeatus), presente en nuestros ríos, y también del pez payaso (Amphiprion ocellaris), los machos construyen un nido donde la hembra deposita los huevos. Mientras nacen los alevines, ellos agitarán sus aletas para dar oxígeno a los huevos, alejarán a posibles depredadores y limpiarán el nido.

Y mientras todo esto sucede, ¿dónde están las madres? El cuidado paternal permite a la hembra disponer de tiempo para producir otro lote de huevos, que estará a punto cuando el macho quede libre de sus quehaceres. Todo un ejemplo de distribución del trabajo en la crianza.

*Miquel Planas Oliver es investigador del Instituto de Investigaciones Marinas (CSIC).

Números primos: los guardianes de Internet

agatamanuelPor Manuel de León y Ágata Timón*

¿Qué tienen que ver los números primos con los millones de mails que surcan la red cada día? Mucho. Estos peculiares dígitos son esenciales para que cualquier información que enviemos llegue al destinatario correcto y no se ‘pierda’ por el camino o sea usurpada por malintencionados. Veamos por qué.

Los números primos son aquellos que solo se pueden dividir por sí mismos y por la unidad: 2, 3, 5, 7, 11, 13, 17… Los matemáticos los consideran los ladrillos con los que se construyen todos los números, ya que cualquier número entero puede descomponerse de manera única como el producto de primos. En otras palabras, estos números serían los átomos de las matemáticas, permitiendo a los demás construirse a partir de ellos en forma de productos.

Los números primos son, además, infinitos. Sin embargo, a medida que se avanza en la lista de estos números, vemos que cada vez aparecen con menos frecuencia. La manera en la que se distribuyen los números primos dentro de los naturales es de tremenda importancia, no solo para los matemáticos, sino para todo el mundo, o al menos para cualquier persona que utilice Internet.

El algoritmo...

El algoritmo criptográfico RSA se utiliza para intercambiar información de forma segura en Internet / Wikipedia

Prueba de ello es el algoritmo criptográfico RSA, que se utiliza para garantizar la seguridad del intercambio de información en la web. Fue desarrollado en 1977 por Rivest, Shamir y Adleman, del Instituto Tecnológico de Massachusetts (MIT), y está basado precisamente en la factorización de números enteros en números primos. Como en todo sistema criptográfico de clave pública, cada usuario posee dos claves de cifrado: una pública y otra privada. Cuando se quiere enviar un mensaje, el emisor usa la clave pública del receptor para cifrar su mensaje, y el receptor, cuando lo recibe, se ocupa de descifrarlo usando su clave privada. En el sistema RSA los mensajes enviados se representan mediante números, y el funcionamiento se basa en el producto, conocido, de dos números primos grandes elegidos al azar y mantenidos en secreto.

adfasf

El matemático Bernhard Riemann / Wikipedia

A priori, parecería sencillo romper el código, pues bastaría con descomponer un número en sus factores primos; pero, cuando se trabaja con primos de 100 dígitos, al multiplicarlos se obtendrá un número de tal magnitud que descomponerlo ‘a lo bruto’ supondría una tarea titánica. Por eso las transacciones comerciales por Internet dependen de los números primos, lo que los hace muy importantes para los negocios, las comunicaciones, los registros… Conocer cómo se distribuyen, y poder así conseguir primos cada vez más grandes que sirvan de clave criptográfica, es un gran reto para las tecnologías y para las propias matemáticas.

Y ese es el desafío que plantea la famosa hipótesis de Riemann, que hasta ahora nadie ha sido capaz de resolver, pese al esfuerzo de los mejores matemáticos del mundo durante más de 145 años. Formulada por Bernhard Reinmann en 1859, trata de explicar cómo podrían estar distribuidos los números primos, pero su autor no pudo llegar a demostrarla. Si alguien lograra hacerlo, podría transformarse la forma de hacer negocios y afectar a la mecánica cuántica, la teoría del caos y al futuro de la computación.

Por eso el Instituto Matemático Clay de la Universidad de Cambridge (Massachussets) anunció en 2000 que premiaría con un millón de dólares a quien lograra despejar la famosa conjetura.

 

* Manuel de León es director del Instituto de Ciencias Matemáticas y autor del libro Vida y legado de Turing (CSIC-Catarata), que ha coescrito junto a Ágata Timón.