Entradas etiquetadas como ‘aplicaciones’

¿Para qué sirve un láser?

Por José Vicente García Ramos (CSIC)*

Cuando se inventó, en 1960, el láser no servía para nada. De hecho, en aquellos tiempos algunos científicos se referían a él como “una solución en busca de problema”. Entonces, ¿para qué lo inventaron? Parece que querían probar, experimentalmente, que el mecanismo de amplificación de la luz por emisión estimulada, predicho por Einstein en 1917 y demostrado con microondas en 1954, podía extenderse a la luz visible.

Hoy, sin embargo, la situación es muy diferente y el láser ha encontrado tantas aplicaciones que nos resulta casi imposible enumerarlas. Las tres características que diferencian la luz de un láser de la luz del Sol o de la generada por una bombilla son que, en el caso del láser, se trata de un haz de luz monodireccional, monocromático y coherente.

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Hoy día los láseres tienen numerosas y variadas aplicaciones. / Wikimedia Commons

Cualquier láser contiene al menos tres elementos fundamentales: un medio activo, un sistema de bombeo y una cavidad resonante. El medio activo es el material (sólido, líquido o gaseoso) que emite la luz. Para que este medio activo emita luz hay que excitarlo de alguna manera, del mismo modo que el filamento de una bombilla necesita una corriente eléctrica que pase por él. En el caso de un láser se trata del sistema de bombeo, que puede consistir en otro láser, una lámpara convencional o una corriente o descarga eléctrica. El medio activo se coloca entre dos espejos que forman una cavidad resonante donde la luz rebota entre ellos y ayuda a la amplificación, como lo que ocurre en la caja de resonancia de una guitarra que amplifica las ondas acústicas. Uno de los espejos es semirreflectante, por lo que parte de la luz amplificada sale de la cavidad resonante en forma de haz.

El volumen de información que transmite una onda electromagnética depende de su frecuencia; en este sentido, la luz de un rayo láser resulta idónea para la transmisión de señales. Por eso, entre sus aplicaciones más usadas está la lectura de discos compactos, la fabricación de circuitos integrados y la lectura de códigos de barras. En el ámbito de la medicina, la tecnología láser se aplica a los bisturís cauterizantes, ya que permite realizar cortes muy finos de gran precisión, evitar cualquier riesgo de contagio y cauterizar de manera inmediata, alejando el peligro de hemorragias.

Fibra óptica, impresoras o espionaje

Sin embargo, muchas de las aplicaciones del láser no dependen tanto de su capacidad para generar un rayo de luz como del hecho de que representa una concentración extremadamente intensa de energía. Basándonos en esta propiedad, podemos enumerar tres aplicaciones sumamente importantes en el terreno de la óptica. Una de ellas son las telecomunicaciones mediante fibra óptica. En este caso, las señales eléctricas que hasta hace poco tiempo se desplazaban a través de conductores metálicos han sido reemplazadas por pulsos ópticos que se transmiten a través de fibra de vidrio del grosor de un cabello. Como potente fuente de luz, el láser confiere a estas fibras una elevada capacidad de transmisión.

Espectáculo de luces con láseres. / kpr2 - Pixabay

Espectáculo de luces con láseres. / kpr2 – Pixabay

La segunda aplicación óptica importante está en la holografía, que es una técnica para crear imágenes tridimensionales, inventada en 1947 por el ingeniero eléctrico húngaro Dennis Gabor (1900-1979), que obtuvo por ello el Premio Nobel en 1971. Esta técnica se basa en la interferencia entre dos rayos de luz. Uno de los aspectos básicos del sistema es la necesidad de utilizar luz coherente, y cuando se inventó solo se disponía de fuentes relativamente débiles de este tipo de luz. La llegada del láser transformó la situación, porque la generación de una poderosa fuente de luz coherente es su esencia. Con el tiempo, la holografía llegó a hacerse muy familiar en una variedad de formas, como en la marca de seguridad de las tarjetas de crédito y en publicidad.

La tercera aplicación importante está en las impresoras de los ordenadores, donde, controlando un haz láser, se dibujan las palabras que se quieren imprimir.

También podemos destacar las aplicaciones que dependen de su capacidad para concentrar una gran cantidad de energía sobre una superficie muy pequeña (alrededor de un millón de vatios por centímetro cuadrado) durante un periodo de tiempo extremadamente breve. Algunas de las más importantes aplicaciones industriales de los láseres son fruto de esta capacidad: la perforación, la soldadura y el corte de distintos materiales.

Además, puesto que un rayo láser es muy fino y prácticamente no sufre divergencias, se puede usar para medir largas distancias con gran precisión. La técnica (semejante a la del radar) consiste en captar el rayo reflejado por el objeto distante y medir el tiempo transcurrido desde el envío de la señal hasta la recepción de su reflejo. Conociendo la velocidad de la luz, resulta fácil calcular la distancia. En los años setenta, este método se empleó para determinar con precisión la distancia de la Luna, utilizando los reflectores que habían instalado allí los astronautas norteamericanos.

Pero eso no es todo, también se han empleado láseres hasta para temas relacionados con el espionaje. En 1968 se descubrió que un láser puede detectar perfectamente desde el exterior las vibraciones del cristal de las ventanas producidas por las conversaciones en el interior de una casa. Vemos cómo el láser, que en un principio era como “un invento en busca de un empleo”, tiene en la actualidad un sinfín de variadas aplicaciones.

 

* José Vicente García Ramos es Vocal del Comité de Ética del CSIC y autor del libro Las moléculas: cuando la luz te ayuda a vibrar (Editorial CSIC-Los Libros de la Catarata). Hasta su jubilación en 2016 fue investigador en el Instituto de Estructura de la Materia del CSIC.

Apps científicas que no te puedes perder

Por Mar Gulis

Identificar árboles y setas en tus paseos por el campo, colaborar con proyectos científicos recogiendo datos o visitar virtualmente centros de investigación emblemáticos… Estas son solo algunas de las posibilidades que te ofrecen las apps desarrolladas por el Consejo Superior de Investigaciones Científicas (CSIC). Te las presentamos a continuación, para que sepas cómo acercarte a la ciencia desde tu móvil o tablet.

Si te gusta la naturaleza no te puedes perder dos apps imprescindibles para ir de excursión: Arbolapp, que te permitirá reconocer árboles silvestres de un modo sencillo e intuitivo; y FungiNote, que te ayudará a identificar hongos y compartir tus fotos y hallazgos con otros usuarios y usuarias.

Tigatrapp y Arbolapp

Tigatrapp y Arbolapp son dos de las aplicaciones móviles del CSIC más populares.

Los contenidos de ambas han sido desarrollados por el Real Jardín Botánico del CSIC pensando en todo tipo de públicos. Arbolapp contiene fotografías, mapas de distribución y descripciones de 118 de especies de árboles silvestres de la Península Ibérica y las Islas Baleares. En sus fichas podrás encontrar diversas curiosidades, como que La Gioconda está pintada sobre una tabla de álamo o que en el Antiguo Egipto se usaban los frutos del almendro para ajusticiar a los criminales.

¿Qué hongo es ese? ¿Es venenoso? ¿En qué otros lugares crece? Preguntas como esta son las que trata de responder FungiNote, una guía de campo que incluye información e imágenes sobre 150 especies. Todas ellas están ilustradas con fotografías que, en muchos casos, se complementan con dibujos botánicos de finales del siglo XVIII, el siglo XIX y principios del XX.

Otras apps del CSIC invitan a la ciudadanía a involucrarse directamente en proyectos de investigación. Es el caso de Tigatrapp, una aplicación que permite participar en el estudio y seguimiento del mosquito tigre, especie invasora que está considerada potencial transmisor de enfermedades víricas tropicales, como el dengue y la chikungunya.

Desarrollada por el Laboratorio de Ecología del Movimiento del Centro de Estudios Avanzados de Blanes del CSIC, esta app te enseña a reconocer al mosquito tigre y te permite compartir fotografías y datos de localización de los ejemplares y lugares de cría que vayas localizando. También puedes participar en misiones puntuales propuestas por el equipo científico.

De ciencia ciudadana también se ocupa SeabirdsTagram. Si te dedicas a la pesca por profesión u afición y quieres colaborar en el estudio de las aves marinas del Mediterráneo, puedes utilizar esta app para enviar fotografías cada vez que encuentres un ejemplar accidentado en tus redes. Tus datos serán de enorme utilidad para que los científicos del Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB) puedan estimar la tasa de mortalidad de aves amenazadas y evaluar el impacto de las capturas accidentales.

Otra opción es participar con tu móvil en el estudio del impacto del cambio climático en los encinares mediterráneos. A través de la app GeoODK, puedes evaluar el estado de los bosques de encinas que encuentres y enviar tu información a los investigadores del Museo Nacional de Ciencias Naturales.

Pero la cosa no queda aquí: si lo que quieres es hacer una visita virtual a los centros del CSIC con más historia y conocer los tesoros científicos que albergan en su interior, tienes a tu disposición las apps del Museo Nacional de Ciencias Naturales y del Real Jardín Botánico. Y si estás pensando visitar el Valle de Arán, no dudes en consultar Eth Holet, una aplicación en la que un duende mitológico te guiará por espacios naturales descritos por investigadores del CSIC. Por último, si lo tuyo es bucear en los restos del pasado, descárgate Arqueológicas, la versión para móviles del libro Arqueológicas: la razón perdida (Bellaterra, 2012), del investigador del CSIC Felipe Criado-Boado.