Archivo de la categoría ‘Sin categoría’

Insectos y otros artrópodos: más de un millón de especies imprescindibles para los ecosistemas

Por Jairo Robla Suárez (CSIC)*

A pesar de recibir el apodo de ‘bichos’, en ocasiones con cierto desprecio, la importancia y la repercusión que tienen los insectos y otros artrópodos para la vida en nuestro planeta son desconocidas para muchas personas. Estos organismos con exoesqueleto externo y apéndices articulados suponen más del 50% de toda la biomasa animal actual de nuestro planeta. Aunque actualmente su diversidad dista mucho de ser bien conocida, suman más de un millón las especies de artrópodos que podemos encontrar campando a sus anchas en absolutamente todos los ecosistemas que atesora nuestro cuerpo celeste. Son capaces de vivir en regiones desérticas que parecen propias de un relato sobre el infierno, en paisajes blancos helados por las temperaturas más frías, en las cortinas de intenso color verde de bosques, selvas o praderas, en cursos de agua y volcanes; pero también habitan en ambientes ruderales (muy alterados por el ser humano) y en nuestras propias casas, pueblan las zonas más altas del planeta y hasta ocupan el gran fondo azul. En todos estos ecosistemas hay artrópodos y en todos ellos realizan una función tremendamente importante y vital, aunque esta nos pase desapercibida.

Insecto de la subfamilia phaneropterinae / Luis F. Rivera Lezama ©RiveraLezama

Insecto ‘hoja’, de la subfamilia Phaneropterinae. / Luis F. Rivera Lezama ©RiveraLezama

Mucho más que polinizadores

La polinización es, sin duda, la misión estrella que se ha atribuido a una gran variedad de insectos voladores. No en vano, más del 90% de las plantas con flor que encontramos en todo el planeta necesitan de un agente animal, concretamente un insecto, para fructificar. Quizá nos acordemos más de ellos cuando compramos esas opulentas y brillantes frutas en nuestro mercado de confianza. Abejas, moscas, escarabajos, mariposas, avispas y un sinfín de pequeños organismos más trabajan día a día por transferir el polen entre las flores para continuar con el milagro de la vida vegetal. Todos ellos nos dan mucho sin pedir nada a cambio.

‘Mosca abejorro’, familia Bombyliidae. Sus larvas son predadoras de los huevos y larvas de otros insectos, tales como orugas, abejas y escarabajos. / Luis F. Rivera Lezama ©RiveraLezama

Pero, más allá de la polinización, podríamos decir que los artrópodos son sustento de todos los hábitats y que son muchas más las funciones que desempeñan. Por encima de las plantas, en las cadenas tróficas, están ellos. Sirven de recurso nutricional para todos aquellos animales que nos llaman más la atención, que nos parecen más bonitos o a los que, desde luego, nunca osaríamos llamar ‘bichos’ con tanto recelo. Si los insectos decidieran hoy ponerse en huelga y viajar a un planeta ignoto más allá de nuestro sistema solar, todas las especies animales, incluyendo los seres humanos, no tardaríamos en extinguirnos. Por lo tanto, es innegable pensar que el mundo actual está dominado por los artrópodos y que estos cargan sobre sus hombros el peso de la vida en nuestro planeta.

Hormiga transportando un pétalo. Género ‘Acromyrmex’. / Luis F. Rivera Lezama ©RiveraLezama

Existen muchos insectos y otros artrópodos que participan en la dispersión de semillas. El hecho de que este bosque que hoy llega hasta aquí mañana llegue un poco más allá puede ser obra de pequeños artrópodos que ayudan a otros dispersores más clásicamente estudiados, como las aves. Conocidos son, por ejemplo, los casos de las hormigas, que, en su incesante colecta de semillas para alimentarse, acaban moviendo estos gérmenes de vida más allá de su planta madre, contribuyendo a que la vegetación se extienda cada vez más.

Detalle de escarabajo joya gema (México), género ‘Chrysina’. / Luis F. Rivera Lezama ©RiveraLezama

También realizan una función esencial por debajo del suelo que pisamos: junto a otros muchos organismos, son los principales aireadores, fertilizadores y preparadores del sustrato. Su actividad genera un suelo con unas condiciones óptimas para el crecimiento de los organismos vegetales. Mientras paseamos por un prado cualquiera en el que aparentemente no vemos nada más que hierbas, bajo nuestros pies se encuentra toda una comunidad subterránea que trabaja día y noche para que todo esté en equilibrio: milpiés, bichos bola, escarabajos, larvas de diferentes organismos y muchos más. Los artrópodos son artífices de este equilibrio gracias a que son los mayores expertos en reciclaje: ayudan en la transformación de los excrementos, cadáveres y restos de otros organismos, devuelven los nutrientes al sistema y los ponen a disposición del resto de organismos.

‘Chrysina quetzalcoatli’ (México). Como en el caso del escarabajo joya gema, sus larvas viven en troncos en descomposición. / Luis F. Rivera Lezama ©RiveraLezama

Además, controlan las poblaciones de otros artrópodos, plantas y de grandes vertebrados al evitar que se establezcan como plagas. Son incontables los artrópodos que viven como parásitos sobre la piel de otros animales o sobre los tejidos de otros vegetales. De esta manera son capaces de extraer de los ecosistemas a aquellos organismos peor adaptados y de evitar que las poblaciones de otros organismos se desmadren. Son como los jinetes del apocalipsis, buscando que todo aquello que les rodea funcione a la perfección.

Araña trampera, altos de Chiapas (México). / Luis F. Rivera Lezama ©RiveraLezama

Grandes benefactores para el equilibrio, amenazados 

Los artrópodos son unos de los organismos más importantes de nuestro mundo y, sin embargo, gran parte de lo que hacemos consigue afectarles. Hemos esquilmado la vegetación natural, tan necesaria para que obtengan refugio y alimento; les hemos bombardeado con pesticidas y otros químicos para alejarlos de nuestras tierras, aun cuando nos proporcionan más beneficios que perjuicios; hemos hecho lo posible por convertir nuestros campos en terrenos baldíos para los artrópodos, en los que encontrarse una mariposa es como buscar una aguja en un pajar; hemos desecado lagunas, urbanizado todas las zonas posibles, contaminado aguas e incluso llevado basura a cuevas y hasta las cimas más altas del Himalaya; hemos provocado la llegada de especies invasoras a prácticamente todos los puntos del planeta. Con todo ello, hoy muchos artrópodos tratan de sobrevivir a duras penas. Parece que les hemos declarado la guerra a estos organismos tan importantes para nuestro planeta y para nuestra propia supervivencia, a pesar de que guardan muchas de las claves que nos permitirían solucionar gran parte de los desafíos actuales. Y, sin embargo, durante todo el tiempo que llevan en la Tierra, estos animales de pequeño tamaño no han hecho más que dar beneficios sin pedir nada a cambio.

Conservar, proteger, cuidar y educar sobre los artrópodos es educar en el equilibrio de los ecosistemas, en el perfecto funcionamiento de las cosas. Y es que, ¿cómo no van a ser importantes más de un millón de especies para la vida en la Tierra y para nuestros ecosistemas?

Insecto ‘palo’, orden Phasmida o Phasmatodea. Entre los fásmidos se encuentran los insectos más pesados y los más grandes. / Luis F. Rivera Lezama ©RiveraLezama

*Jairo Robla Suárez es investigador en la Estación Biológica de Doñana (EBD-CSIC), donde estudia la restauración de comunidades vegetales sometidas a degradación en el entorno del Guadiamar, afectado por el desastre de Aznalcóllar en 1998. Es autor de La astucia de los insectos y otros artrópodos (ed. Guadalmazán).

**Ciencia para llevar agradece especialmente al fotógrafo Luis F. Rivera Lezama por su generosa colaboración con las imágenes que acompañan al texto.

¿Quién está más emparentado con un atún? ¿Un ser humano o un tiburón?

Por Hannah Bonner* y Mar Gulis

No importa que el atún y el tiburón sean peces y el ser humano un mamífero. Evolutivamente, y contra lo que el sentido común sugiere, los atunes están más próximos a nuestra especie que a los tiburones. La razón: atunes y seres humanos tenemos un antepasado común que vivió hace aproximadamente 400 millones de años, cuando su linaje ya se había separado del de los tiburones.

Imagen de Danilo Cedrone (United Nations Food and Agriculture Organization)

Abuelo pez

Para explicar nuestro parentesco, necesitamos sumergirnos en las profundidades marinas y remontarnos 500 millones de años atrás, en el periodo Cámbrico, momento en el que aparecieron los primeros peces. Vistos con los ojos de hoy, aquellos organismos eran un versión muy sencillita y algo esmirriada de lo que consideramos un pez. No tenían aletas laterales y su pequeña boca carecía de mandíbulas, pero sí tenían características típicas de los peces: una cabeza con dos ojos y dos fosas nasales, una notocorda (estructura precursora de la columna vertebral), músculos en zigzag y unas estructuras de soporte llamadas arcos branquiales.

Aunque no se nos parezcan en nada, proto-peces como el Haikouichthys de la ilustración son los antepasados de tiburones y atunes, sí, pero también de todos los vertebrados, incluidas ranas, serpientes, lagartijas, pájaros, peces y mamíferos.

Haikouichthys)

Haikouichthys, uno de los primeros peces. / Hannah Bonner (Planet Tuna)

La familia se divide: peces con y sin mandíbula

A partir de estos primeros peces evolucionaron tres grupos que han sobrevivido en los mares hasta nuestros días. Los más antiguos y menos comunes son los ciclóstomos, un pequeño grupo compuesto únicamente por las lampreas y los mixines. Al igual que los primeros peces, estos extraños seres de cuerpo alargado carecen de mandíbulas.

Lamprea

Una lamprea, un pez sin mandíbulas. / Hannah Bonner (Planet Tuna)

Más adelante aparecieron los peces que con mandíbulas. Su éxito en términos evolutivos fue tan grande que dieron lugar a muchísimas especies diferentes y que por fin comenzaban a parecerse a lo que conocemos como peces. Los peces con mandíbulas, a su vez, se dividieron en dos grupos: los peces cartilaginosos, que son los tiburones y las rayas, y los peces óseos, que incluyen a todos los demás peces. Alrededor del 96% de todos los peces que habitan hoy los mares son peces óseos: desde los caballitos de mar hasta los meros o los atunes.

Tiburón y salmón

Un tiburón (un pez cartilaginoso) y un salmón (un pez óseo). / Hannah Bonner (Planet Tuna)

Así es (el árbol de) la vida: división tras división

Por su parte, los peces óseos se dividieron en dos grupos: los peces de aletas lobuladas y los de aletas radiadas.

Aletas

Ilustración de Hannah Bonner (Planet Tuna)

Los peces de aletas lobuladas (de nombre científico ‘sarcopterígios’) tienen una serie de huesos en la base de la aleta que guardan un cierto parecido con los huesos de nuestros brazos y piernas. No es casualidad: hace 370 millones de años, esos huesos evolucionaron para convertirse en los huesos de las extremidades de los primeros anfibios. De esos primeros anfibios evolucionaron todos los demás tetrápodos o animales de cuatro patas, seres humanos incluidos.

En cambio, los peces de aletas radiadas (o ‘actinopterígios’) tienen una serie de radios paralelos en las aletas. Constituyen la inmensa mayoría de los peces existentes en la actualidad, incluidos los atunes.

En concreto, los atunes pertenecen a un subgrupo de los peces de aletas radiadas llamados teleósteos, que se distinguen por haber desarrollado una serie de mejoras en las mandíbulas y en las aletas. A su vez, dentro de los teleósteos encontramos una familia llamada Scombridae, que es la familia del atún y de sus parientes más próximos, como el bonito y la caballa. Los Scombridae son depredadores de aguas abiertas con cuerpos perfectamente adaptados para nadar más rápido que sus presas.

La búsqueda del antepasado común

Ahora que sabemos que los seres humanos descendemos de peces de aletas lobuladas y los atunes descienden de peces de aletas radiadas, la pregunta es: ¿quién fue nuestro último ancestro común? Evidentemente tuvo que ser algún pez que vivió antes de que estos dos grupos se separaran. No podemos saber con exactitud quien fue este antepasado, pero a partir del registro fósil se ha calculado que probablemente vivió hace unos 400 millones de años, al principio del período del Devónico. Eso es hace un montón de tiempo, pero aun así quiere decir que somos parientes, aunque muy lejanos, del atún. Y que el atún, a su vez, está más emparentado con un ser humano que con un tiburón, porque los peces cartilaginosos se separaron de los peces óseos en una época todavía más antigua.

Arbol de familia de los vertebrados

Ilustración de Hannah Bonner (Planet Tuna)

Para saber más, consulta el vídeo de Hannah Bonner ¿Somos parientes de los atunes?

* Este post es una adaptación de “Nuestros parientes los atunes”, texto publicado por Hannah Bonner, autora e ilustradora, en la web Planet Tuna, un proyecto de divulgación del Instituto Español de Oceanografía del CSIC que desentraña los secretos de los atunes.

¿Te inspiran la ciencia y la poesía? Participa en el concurso #MicropoemasCSIC2

Por Mar Gulis

¿Sabías que las “mariposas del alma” es el poético nombre que Santiago Ramón y Cajal dio a un tipo específico de neuronas? Quizá resulte curioso que un científico de su relevancia, premio Nobel de Medicina en 1906, haya utilizado una metáfora así para hablar de un descubrimiento relacionado con la neurociencia. Pero no es algo que debiera sorprendernos, pues la ciencia y la poesía tienen más en común de lo que parece: ambas exploran lo desconocido en busca de nuevos conocimientos y, para ello, recurren a la imaginación y al cuestionamiento de lo establecido.

Si combinar ciencia y poesía te resulta inspirador, ahora puedes participar en #MicropoemasCSIC2, un concurso en redes sociales impulsado por @CSICdivulga, el perfil ‘social’ de la Vicepresidencia Adjunta de Cultura Científica y Ciencia Ciudadana del CSIC. El certamen está abierto a personas de cualquier parte del mundo y, en esta segunda edición, la participación puede realizarse tanto en Twitter, como en Instagram Facebook.

¿Cómo participar?

Para participar en #MicropoemasCSIC2, lo fundamental es tener ideas e imaginación. Si necesitas ejemplos para inspirarte, en este enlace puedes ver los resultados de la edición anterior: #MicropoemasCSIC.

Eso sí, no olvides que tu micropoema tiene que estar relacionado con algún aspecto de la ciencia (la investigación científica, el oficio de investigador/a, los avances, los dilemas, las aplicaciones, la importancia del conocimiento científico, etc.). Ten en cuenta también que deberá estar escrito en castellano, ser original y no haber sido publicado con anterioridad.

Dar rienda suelta a la creatividad está muy bien, pero en la micropoesía hay límites. En este caso, tus propuestas deberán tener un máximo de 250 caracteres con espacios y caber en una sola publicación de las redes mencionadas. Además, no podrás presentar al concurso más de tres.

Una vez que tengas claro con cuál micropoema o micropoemas vas a participar, elige la red que prefieras y, si todavía no lo haces, comienza a seguir a @CSICdivulga. Después lanza cada texto en un tuit, un post de Instagram o una publicación de Facebook incluyendo una mención a @csicdivulga y el hashtag #MicropoemasCSIC2.

El concurso permanecerá abierto desde el 21 de marzo (Día Mundial de la Poesía) al 23 de abril de 2023 (Día Internacional del Libro), ambos inclusive, pero no hace falta que lo dejes para el final.

Lotes de libros como premio

Concluido el plazo de participación, un comité formado por personal de cultura científica CSIC seleccionará 10 micropoemas valorando la creatividad, la originalidad, la calidad literaria y la adecuación al tema planteado (la ciencia y la tecnología). Si el tuyo resulta seleccionado, te enviaremos a casa un lote de libros de Editorial CSIC que incluirá títulos relacionados con la poesía, el arte, la ciencia o la divulgación. Para ello, antes te pediremos que nos facilites una dirección postal dentro de España.

Si todavía tienes dudas, puedes consultar las bases completas aquí. ¡Anímate y participa!

El vacío… o cómo un termo mantiene el café caliente

Por José Ángel Martín Gago y Mar Gulis (CSIC)*

Alguna vez en la vida, quien más quien menos se ha deleitado to­mando un café caliente en un entorno muy frío, remoto o en el que, por ejemplo, hay muy escasas posibilidades de poder encontrar una cafetería. El modo más habitual de conseguirlo es utilizando un simple y económico termo. Pero, ¿te has preguntado alguna vez por el mecanismo que hace posible este ‘milagro’?  Tiene que ver con el vacío. Aquí te lo explicamos.

Un termo consta de dos vasijas: una interior, en contacto con el líquido que queremos mantener a una temperatura dada; y otra exterior, en contacto con el ambiente y que generalmente hace de soporte del termo. La interior se sujeta por el cuello con la exterior a través de una mínima porción de material y dejan­do un pequeño espacio, vacío de aire, entre ambas vasijas. De esta forma, el termo aísla el espacio interior, donde nuestro café se mantiene a 40 °C, del exterior, que puede estar a 4 °C.

Si el recipiente que contiene el café estuviese en contacto directo con el ambiente, en po­cos minutos el café adquiriría la temperatura del entorno y nos lo tomaríamos frío. En cambio, si vaciamos de aire el espacio entre las dos vasijas, conseguimos aislarlas térmi­camente. Esto lo explica la teoría cinética de gases: la transferen­cia de calor se debe básicamente al intercambio de energía entre las moléculas más calientes y las más frías cuando cho­can entre sí. Con esta cámara de vacío intermedia se consigue que la conductividad térmica entre ambos recipientes sea prác­ticamente nula. Es decir, sin moléculas de aire que transfieran el calor, la vasija interior permanecerá aislada y, por tanto, no variará su temperatura.

Curiosamente, este desarrollo no es tan reciente como se podría supo­ner. El primero en realizarlo fue el físico escocés James Dewar en 1892. De ahí que estos recipientes que proporcionan aislamiento térmico se conozcan como Dewar o vasos Dewar.

Un dato muy ilustrativo de la eficacia de este proceso es que, si el vacío estuviese en el rango del ultra alto vacío (con presiones parecidas a las que puede haber en el espacio interplanetario) y el contacto entre ambos recipientes fuese inexis­tente o mínimo, se podría mantener el café caliente más de diez años. Sin embargo, en el caso de un termo di­señado para líquidos o alimentos, el vacío intermedio corres­ponde a lo que llamamos bajo vacío (la presión es poco menor de la atmosférica), lo que ocasiona que las moléculas de aire pongan en contacto ambas superficies, y nuestro café acabe enfriándose.

Criogenia: del termo de café al transporte del nitrógeno líquido

Sin embargo, para muchísimas aplicaciones tecnológicas se utiliza el nitrógeno o el helio líquido, elementos que deben mantenerse a temperaturas muy bajas y se transportan en recipientes metálicos de cientos de litros. La diferencia térmica entre las paredes interiores y ex­teriores en estos casos es muy grande (más de 200 °C). Si utilizáramos un mecanismo como el de un termo normal, el nitrógeno o el helio líquido se sublimarían fácilmente y pasarían de líquido a gas. Para evi­tarlo, es necesario tener alto vacío entre ambas superficies (presiones menores de un millón de veces la presión atmosférica, o menores de 10-6 milibares de presión). Cuando esto se logra, los tanques o recipientes tipo Dewar que transportan estas sustancias pueden conservar y almacenar nitrógeno líquido durante varias semanas a -196 °C.

El uso de temperaturas criogénicas es mucho más extenso de lo que podríamos imaginar. En biología, bioquímica o medicina la criogenia es muy importante para la conservación de célu­las y cultivos, como el esperma y los óvulos; medicamentos, como algunas vacunas; o para tratar algunos alimentos. También en pruebas de diagnóstico, como la resonancia magnética nuclear. Desde el punto de vista de la tecnología, muchos aparatos de inves­tigación, como los detectores de radiación o los imanes supercon­ductores, necesitan nitrógeno o helio líquido para funcionar. Por tanto, de manera indirecta, el vacío ayuda a conservar y transportar estas sustancias criogénicas y hace posible es­tas tecnologías en nuestro día a día.

*José Ángel Martín Gago es investigador del CSIC en el Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) y autor del libro de divulgación ¿Qué Sabemos de? El vacío (CSIC-Catarata).

 

De los test COVID al tratamiento del cáncer: la revolución de la nanomedicina

Por Fernando Herranz* (CSIC) y Mar Gulis

Un amigo mío [Albert R. Hibbs] comentaba, aunque sea una idea loca, lo interesante que sería en cirugía si el paciente se pudiera tragar al cirujano. Pones al cirujano mecánico en los vasos sanguíneos y se dirige al corazón “mirando” alrededor […]. Esa máquina encuentra qué válvula es la defectuosa, saca el cuchillo y la corta. Otras máquinas podrían incorporarse en el cuerpo de forma permanente para asistir en el funcionamiento de algún órgano defectuoso.

Este es un extracto de la famosa charla que el físico teórico Richard Feynman dio en 1959 en la reunión anual de la American Physics Society. En esa intervención, considerada como el origen de la nanotecnología, el científico y su colega Hibbs se anticiparon a muchos de los conceptos y desarrollos que hoy son una realidad, como el uso de nanomateriales para mejorar el diagnóstico y el tratamiento de una patología.

Treinta años después de la charla de Feynman, en la década de los 90, la investigación en nanomedicina comenzó a crecer de forma sistemática y, a partir del año 2000, experimentó una auténtica explosión. Pasadas poco más de dos décadas, la comunidad científica ha generado un catálogo de nanomateriales con aplicaciones para problemas biomédicos tan amplio como sorprendente. Los test para detectar en casa enfermedades como la COVID-19, o los eficientes mensajeros que, dentro de nuestro organismo, entregan en tiempo y forma un fármaco allí donde se necesita, o incluso tratamientos de ciertas patologías son solo algunos de los muchos logros de la nanotecnología aplicada a la medicina.

El nanomaterial más empleado en los kits para la COVID-19 son las nanopartículas de oro. / Jernej Furman

Lo más importante de un nanomaterial es el tamaño porque, a medida que aumenta o disminuye, sus propiedades ópticas, magnéticas o eléctricas, entre otras, pueden ser completamente distintas. Por ejemplo, es posible obtener toda una gama de colores fluorescentes usando un mismo material, con idéntica composición química, variando únicamente su tamaño. A veces, una mínima diferencia de un nanómetro hace que la luz emitida por el nanomaterial cambie. Las aplicaciones de una propiedad como esta son enormes en ámbitos como el diagnóstico de una enfermedad.

Nanomedicina para saber qué nos pasa

Una de las aplicaciones más importantes de las nanopartículas son los test de diagnóstico. En el caso del diagnóstico in vitro, cuando la muestra sale del paciente y se aplica a un sistema de análisis, el nanomaterial más empleado son las nanopartículas de oro, presentes tanto en los test de embarazo como en los populares kits para la COVID-19.

De hecho, gracias a los nanomateriales, durante la pandemia se consiguió obtener en tiempo récord varias versiones de kits suficientemente sensibles y con bajos costes de producción. Y hoy ya se pueden comprar test que emplean nanopartículas de oro y que, en una sola medida, pueden detectar la presencia del SARS-CoV2 y de los virus de la gripe A y la gripe B.

Cuando se quiere estudiar el interior del paciente para sacar una prueba in vivo se utiliza la imagen molecular. Para realizar estos ensayos se utilizan diferentes técnicas, como la imagen por resonancia magnética (MRI) o la tomografía por emisión de positrones (PET). La lista de potenciales ventajas de las nanopartículas en este ámbito es muy larga, porque para cada modalidad de imagen existe al menos un tipo de nanopartícula que se puede diseñar con un tamaño ‘a la carta’ y mejorar así el diagnóstico, o reducir la toxicidad de las sustancias inyectadas al paciente. Hay materiales que directamente funcionan como un código de barras hecho a base de nanopartículas, ya que a cada enfermedad le corresponde un perfil de fluorescencia único.

Nanopartículas de oro de distintos colores debido a su distinto tamaño. / Fernando Herranz

Transportistas de fármacos y nanopartículas terapéuticas

Desde el origen de la nanomedicina, las nanopartículas se han empleado como eficientes sistemas de transporte de fármacos. Aquí sucede lo mismo que en otros campos: la variabilidad de nanomateriales es enorme. Su misión es mejorar el funcionamiento in vivo, la seguridad o la estabilidad de un ingrediente farmacéutico activo. Para cumplir esta función, la nanomedicina ya tiene una notable presencia en oncología y hematología. Y después del éxito de las vacunas de la COVID-19, las de ARNm (ARN mensajero) también están creciendo rápidamente.

Hasta ahora, la nanomedicina ha ayudado a detectar de forma más rápida y precisa una patología y ha servido de apoyo fundamental para la liberación de medicamentos en nuestro interior. Pero, ¿y si las nanopartículas también pudieran curarnos? ¿Y si tuvieran efecto terapéutico? Esto no es ciencia ficción. Algunas nanopartículas ya se encuentran en ensayos clínicos de nuevos tratamientos anticancerígenos. En esta línea, existe una técnica denominada hipertemia magnética que trata de matar las células cancerígenas aplicando calor. Para conseguir que este llegue principalmente a las células cancerosas y no a las sanas se emplean nanopartículas magnéticas, principalmente de óxido de hierro. Si situamos nanopartículas magnéticas dentro de un campo magnético se alinearán en el sentido de dicho campo. Si ahora cambiamos el sentido, las nanopartículas girarán con él. Si ese giro se hace de forma continua y rápida, empleando un campo magnético alternante, el giro generará calor en la zona donde las nanopartículas están acumuladas. Este tipo de tratamiento parece prometedor para el cáncer de páncreas (ya se están realizando ensayos en España) y también podría ser eficaz en el cáncer de próstata.

El flujo de artículos científicos y de aplicaciones de la medicina no para de crecer, así que el futuro en este ámbito tiene buen pronóstico. Los retos para la comunidad científica experta en nanomateriales residen en ir de la mano de los profesionales clínicos. También es necesario fomentar la sencillez de los nanomateriales, porque muchas veces las personas que trabajamos en química, tentadas de demostrar la complejidad que pueden alcanzar estos materiales, construimos sistemas con muchos más componentes de los necesarios, y esto puede ser un escollo para las agencias evaluadoras de nuevos fármacos.

* Fernando Herranz es investigador del CSIC en el Instituto de Química Médica (IQM-CSIC) y autor del libro La nanomedicina (CSIC-Catarata).

Un café más sostenible: convierte los posos en unas saludables galletas

Por Mar Gulis (CSIC)

“¡Ah, el café!, ¡sabe tan dulce!,

es más cautivador que mil besos,

más suave que el moscatel.

Café, café… es lo único que necesito.

Si alguno quiere hacerme feliz,

que me ofrezca un café”.

Esta estrofa corresponde a La cantata del café, una composición musical de Johann Sebastian Bach en forma de pequeña ópera cómica. Pero el célebre compositor no es el único personaje histórico aficionado al café. Se dice que Ludwig van Beethoven contaba exactamente 60 granos para preparar su taza. Honoré de Balzac tomaba unas 50 tazas al día y demostró su pasión en un ensayo humorístico llamado Los placeres y los dolores de café. Incluso Napoleón Bonaparte dijo que prefería sufrir a dejar de tomar café. Roosevelt, Margaret Atwood o David Lynch son otras celebridades amantes de esta bebida: una de las más populares y controvertidas de la dieta humana y la favorita de un número cada vez mayor de personas en todo el mundo.

Según explican María Dolores del Castillo y Amaia Iriondo, investigadoras del Instituto de Investigación en Ciencias de la Alimentación (UAM-CSIC) y autoras del libro ¿Qué sabemos de? El café (CSIC-Catarata), esta bebida se obtiene a partir de las semillas del fruto o cereza del cafeto (arbusto perennifolio del que toma su nombre) mediante un cuidadoso proceso de recolección en su punto óptimo de maduración, seguido del tostado y la extracción. De todo ello depende el aroma, sabor y composición final del preciado producto, que se prepara de diversas maneras y en diferentes niveles de tostado a lo largo del globo.

En ese viaje de la cereza hasta nuestra taza de café se queda por el camino más del 90% del fruto. Así ocurre con la cáscara, compuesta por la piel y la pulpa, el mucílago, una capa gelatinosa que recubre la semilla, el pergamino, una piel muy fina que rodea el grano, y la cascarilla, que se produce durante el tostado del grano. Durante el proceso productivo se generan en el mundo alrededor de 784.000 toneladas de biomasa residual al año, que suponen un problema medioambiental si se vierten a los ríos o se dejan descomponer sobre el suelo de manera no controlada. ¿Qué hacer entonces con tanta materia orgánica? Las autoras apuntan que el objetivo es convertir todos estos desechos en subproductos y explotarlos antes de que se conviertan en residuos.

Posos para el jardín

De entre todos los subproductos generados en la cadena del café, los posos son los que nos encontramos de manera más cotidiana, con el simple hecho de preparar un café en casa. Pero, ¿qué ocurre con las toneladas de posos que se generan al preparar el café que desayunan en España más de 22 millones de personas cada mañana? Es probable que acaben en la basura, en la pila o que una parte se coloque, por ejemplo, en una taza dentro del frigorífico para atrapar olores indeseados, pues el café se comporta como una esponja que atrapa estos compuestos.

También forma parte de la sabiduría popular el uso de los posos en el compostaje. Existen varias formas para su uso en las plantas o en el jardín. Como explican las investigadoras, lo primero es asegurarse de que estén bien secos: se esparcen sobre una bandeja con papel de periódico y se dejan secar al sol para evitar que se pudran o que crezcan hongos, lo que echaría a perder el abono. A continuación, el compostaje de posos es tan fácil como tirarlos en el propio compost. Los filtros, por cierto, también se pueden compostar, especialmente si están libres de productos blanqueantes.

El beneficio de usar los posos como fertilizante es que agregan material orgánico, lo que mejora el drenaje, la retención de agua y la aireación del suelo. También ayudan a que los microorganismos beneficiosos para el crecimiento de las plantas prosperen y atraigan a las lombrices de tierra. Por otro lado, parece que muchas personas que reutilizan los posos en su jardín indican que repele a las babosas y los caracoles.

Posos en tus galletas: una receta para hacer en casa

Aunque las investigadoras inciden en la cantidad de diferentes usos posibles para los subproductos del café (desde energía, combustible, cosméticos o agricultura, por mencionar algunos), cabe recordar que en su composición contienen un alto contenido en fibra y son fuente de proteínas, además de contar con potasio como principal componente mineral, seguido del magnesio y el fósforo. Así, utilizar los posos del café como ingrediente alimentario para el consumo humano sería una de las maneras más eficientes de reutilizarlos.

Una de las formas más sencillas de emplear los posos de café como ingrediente alimentario es cocinar galletas con ellos. Según estudios realizados por el grupo de investigación de las autoras sobre biociencia de los alimentos, las galletas hechas con posos de café entre sus ingredientes cuentan con una alta calidad nutricional, buen sabor y potencial para reducir el riesgo de enfermedades crónicas como la obesidad y la diabetes. Por si fuera poco, ayudan a conciliar el sueño.

Para abrir boca e ir ensayando, aquí os dejamos una receta de galletas incluida en el libro:

GALLETAS CON POSOS DE CAFÉ

INGREDIENTES

  • 60 g de harina de trigo (o sustituto)
  • 20 g de agua
  • 8 g de aceite de girasol
  • 0,6 g de levadura
  • 0,4 g de sal
  • 0,35 g de lecitina de soja
  • 2 g de estevia
  • 3,5 g de fructooligosacáridos (FOS también conocido como “beneo” o “inulina”)
  • 4,5 g de posos de café

Los posos se pueden utilizar frescos obtenidos a partir de una bebida recién preparada por cualquier método (goteo, prensa francesa, cafetera italiana, etc.). Si no se utilizan en las siguientes horas después de la preparación de la bebida, se pueden secar en el horno a 185 °C hasta eliminar toda el agua y conservar en un lugar seco y fresco hasta su uso. Alternativamente, los posos húmedos se pueden conservar en congelación (-20 °C) hasta tener cantidad suficiente para elaborar un buen número de galletas saludables ricas en fibra y con bajo contenido de azúcar.

PREPARACIÓN

Precalentar el horno a 185 °C y forrar una bandeja con papel de hornear. Mezclar todos los ingredientes en un bol hasta obtener una masa. Extenderla con un rodillo, cortar las galletas con un molde o un vaso y colocarlas en la bandeja preparada previamente. Hornear durante 15 minutos aproximadamente (185 °C) y dejar enfriar antes de consumir.

Si te animas a probar esta receta, ¡cuéntanos! Y no olvides que, a pesar de las propiedades beneficiosas que pueda tener un consumo moderado de café (a una temperatura adecuada y dentro de una dieta diversa y equilibrada), es muy importante no añadir azúcar. Solo de este modo podremos obtener los mejores beneficios para la salud, así como disfrutar de todas las propiedades sensoriales que nos ofrecen los productos de café.

Plancton: un mundo en una cucharadita de agua de mar

Por Albert Calbet (CSIC)*

En una pequeña cantidad de agua de mar como la que podemos recoger en la playa con una simple cuchara de café, podemos encontrar unos 50 millones de virus, 5 millones de bacterias, cientos de miles de pequeños flagelados unicelulares, ya sean fotosintéticos, consumidores, o una combinación de ambos, miles de algas microscópicas, unos cinco ciliados o dinoflagelados heterótrofos, y, con mucha suerte, algún pequeño crustáceo, como por ejemplo un copépodo. El plancton, conformado por este vasto acervo de seres diminutos, es fundamental para el funcionamiento de los ecosistemas marinos. Es el responsable de que haya vida en la Tierra, nos ha proporcionado, a escalas geológicas, una buena parte del oxígeno de nuestro planeta y sin él seguro que no comeríamos pescadito frito.

Calanus minor, especie de copépodo del mar Mediterráneo, sobre fondo negro.

Calanus minor. Especie de copépodo del mar Mediterráneo. Si bien en el Mediterráneo el género Calanus no es dominante, en mares más fríos y productivos, como el Mar del Norte o el Océano Ártico representan la mayoría de la biomasa de zooplancton y son claves para el mantenimiento de las pesquerías de la zona. / Imagen capturada al microscopio por Albert Calbet

Plancton: el motor de la vida marina

Todos estos seres que podemos encontrar en cualquier agua de mar están interconectados en una imbricada red trófica (el conjunto de cadenas alimentarias interconectadas) en la que no solo un organismo se come a otro, sino que, al hacerlo, ayuda a que se liberen los nutrientes acumulados en la materia viva y vuelvan a estar disponibles para que empiece de nuevo el ciclo de la vida. La red trófica marina también ayuda a reducir el CO2 atmosférico gracias a un proceso denominado bomba biológica marina. Mediante este proceso las algas absorben CO2 que ha penetrado en el mar desde la atmósfera y lo incorporan en forma de carbono orgánico en su materia viva. Al ser consumidas por el zooplancton, el carbono contenido en las algas pasa a formar parte de este, o acaba en paquetes fecales que son expulsados y sedimentan hacia las profundidades del océano. Allí, este carbono será reciclado o acabará secuestrado en los sedimentos por cientos o miles de años.

Copépodo marino del género Labidocera sobre fondo negro

Copépodo marino del género Labidocera. Este género habita aguas superficiales y posee tonalidades azules que le confieren sus pigmentos fotoprotectores. / Imagen capturada al microscopio por Albert Calbet

La mayor migración de la Tierra

Este proceso de transporte vertical de carbono está estrechamente relacionado con las migraciones de zooplancton. Estos desplazamientos diarios son considerados las mayores migraciones que existen en el planeta. Al migrar hacia capas superficiales para alimentarse durante la noche, el zooplancton evita que sus depredadores, los peces, lo puedan ver y devorar. Todo encaja en un orden y un equilibrio marcados por millones y millones de años de evolución conjunta de depredadores y presas.

Ilustración de la red trófica oceánica

Ilustración de Albert Calbet

El plancton no solo muestra ritmos diarios, también los hay anuales y plurianuales. Los ritmos anuales están marcados por las estaciones. En invierno, el fitoplancton, a pesar de tener plenitud de nutrientes, está limitado por la escasa luz y la baja temperatura. Hacia finales del invierno y principios de la primavera la luz es más intensa y la temperatura comienza a subir, lo que favorece la floración explosiva o bloom del fitoplancton, el cual irá acompañado por un crecimiento de las poblaciones de protozoos primero y de zooplancton de mayor tamaño después.

Ciliado tintínido del género Favella. Los ciliados son protozoos y forman parte del microzooplancton, el mayor grupo de herbívoros del mar. / Imagen capturada al microscopio por Albert Calbet

Cuando el verano está en su máximo esplendor, la ya bien formada termoclina, la capa de separación entre dos masas de agua a temperatura diferente, separa claramente dos zonas: una capa superficial, caliente y pobre en nutrientes, y una más profunda, fría y repleta de nutrientes. El consumo de las algas va agotando lentamente los nutrientes en la capa de mezcla superficial y con la falta de sustento estas van perdiendo empuje. Las algas veraniegas son o bien de pequeño tamaño o bien grandes, pero con capacidad de locomoción (como los dinoflagelados), y esto les permite explorar las micromanchas de nutrientes que puedan quedar. Son estas algas de gran tamaño las que, en condiciones propicias (por ejemplo, dentro de zonas confinadas como bahías, puertos y espigones), pueden multiplicarse hasta formar proliferaciones nocivas. En esta época es cuando aparecen también las medusas y otros tipos de plancton gelatinoso.

Las primeras tormentas del otoño llegan acompañadas de un aumento en la intensidad del viento, lo cual acaba deteriorando la termoclina, que al final se rompe y permite que las aguas ricas en nutrientes lleguen de nuevo a la superficie. En ocasiones, si las condiciones climáticas del año lo permiten, puede haber otro pequeño crecimiento de algas, pero muchas veces las pobres intensidades lumínicas y bajas temperaturas hacen que el fitoplancton no consiga aprovechar la abundancia de nutrientes. Vuelve el invierno y el ciclo comienza de nuevo.

Imagen de alga diatomea al microscopio

Diatomea del género Coscinodiscus. Las diatomeas son algas unicelulares planctónicas o bentónicas que tienen su cuerpo recubierto por dos valvas de sílice, a modo de cajita. / Imagen capturada al microscopio por Albert Calbet

Ritmos alterados por el cambio climático

Este ciclo se repite año tras año en las zonas templadas, sin embargo, la duración de las estaciones y la magnitud de los parámetros físicos (temperatura, densidad, luz) que se alcanzan en ellas es variable. Debido al cambio climático, el plancton se enfrenta a grandes retos y a fenómenos extremos que están provocando cambios en las comunidades. Estas alteraciones en el plancton se transmiten a través de la red trófica al resto de seres vivos y llegan hasta las pesquerías, de las que tanto dependen algunas zonas del planeta. Desincronización entre el período de aparición de depredadores y presas, desplazamiento y sustitución de especies por otras invasoras, aumento de las proliferaciones algales nocivas (antes conocidas como mareas rojas), incremento en la abundancia de medusas, etc., son algunos de los ejemplos de los retos a los que nos enfrentamos. La red trófica planctónica es compleja y nuestra actividad puede dañarla. Por eso es necesario que se apliquen medidas de contención del cambio climático y de la actividad antropogénica en general, y debemos seguir estudiando cómo evolucionarán las comunidades marinas, pues la incertidumbre ante el futuro no había sido nunca tan grande desde nuestra historia reciente.

Sapphirina sp. o zafiro de mar sobre fondo negro

Sapphirina sp. o zafiro de mar. Esta especie de copépodo de forma deprimida posee cristales de guanina que le confieren iridiscencias que reflejan la luz con diferentes tonalidades. / Imagen capturada al microscopio por Albert Calbet

* Albert Calbet es investigador del CSIC en el Instituto de Ciencias del Mar (ICM-CSIC) y autor del libro El plancton y las redes tróficas marinas (2022), una de las últimas novedades de la colección ¿Qué sabemos de? (Editorial CSIC-Catarata). El libro ofrece una visión clara y amena sobre el plancton y su importancia, desarrolla estos y otros temas en detalle y presenta curiosidades sobre el plancton que difícilmente se encuentran en los libros de texto.

 

Conoce en un breve vídeo las mejores fotografías científicas de 2022

El movimiento coordinado de estorninos, la combustión del acero, la cristalización del paracetamol o las neuronas activadas durante la formación de un recuerdo son algunos de los temas protagonistas de las ocho fotografías elegidas en la 19ª edición de FOTCIENCIA, una iniciativa del Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT) con la colaboración de Fundación Jesús Serra, de Grupo Catalana Occidente.

Un gránulo de almidón de tapioca, un ácaro herbívoro, las células del estigma de una flor de Freesia o las formaciones de pirolusitas son otros temas retratados entre las casi 600 fotografías presentadas.

De izquierda a derecha y de arriba abajo: ‘El murmullo, atacado’, ‘Galaxia polisacárida’, ‘Bosque encantado’, ‘Recordando a Cajal’, ‘Fuegos artificiales petrificados’, ‘Nada se resiste al poder del fuego’, ‘Interacciones ocultas’ y ‘Plumas analgésicas’.

En esta décimo novena edición, a las modalidades de participación habituales –Micro, General, Alimentación y nutrición, Agricultura sostenible y La ciencia en el aula– se ha sumado una modalidad especial Año Cajal para recoger imágenes que tengan que ver con las neurociencias o el estudio del cerebro. Esto se debe a que FOTCIENCIA19 se ha unido al Acontecimiento de Excepcional Interés Público Año de Investigación Santiago Ramón y Cajal 2022 (Año Cajal), impulsado a nivel nacional.

Además, como en las últimas ediciones, cada participante ha podido adscribir su imagen a uno de los 17 Objetivos de Desarrollo Sostenible (ODS) declarados por Naciones Unidas.

Un comité formado por 14 profesionales relacionados con la ciencia, la microscopía, las artes visuales o la divulgación científica, entre otras especialidades, han valorado y elegido las ocho fotografías más impactantes y que mejor describen algún hecho científico. Puedes descubrirlas en este vídeo:

Con una selección más amplia de fotografías y sus respectivos textos se elaborará una exposición itinerante que será inaugurada en primavera de 2023. Dos copias de la muestra se prestarán gratuitamente y recorrerán museos y centros culturales, educativos y de investigación de todo el territorio nacional a lo largo del año. Esta selección también quedará recogida en un catálogo de fotografías científicas.

Consulta toda la información sobre esta iniciativa en www.fotciencia.es.

Imágenes seleccionadas, por orden de aparición en el vídeo:

Modalidad Micro:

  1. Bosque encantado / Isabel María Sánchez Almazo, Lola Molina, Concepción Hernández Castillo
  2. Plumas analgésicas / María Jesús Redrejo Rodríguez, Eberhardt Josué Friedrich Kernahan

Modalidad General:

  1. El murmullo atacado / Roberto Bueno Hernández
  2. Nadie se resiste al poder del fuego / Sara María Rubio

Modalidad Año Cajal:

  1. Recordando a Cajal / Miguel Fuentes Ramos

Modalidad Alimentación y nutrición:

  1. Galaxia polisacárida / Antonio Diego Molina García

Modalidad Agricultura sostenible:

  1. Interacciones ocultas / José María Gómez Reyes, Isabel María Sánchez Almazo, Lola Molina, Daniel García-Muñoz Bautista-Cerro

Modalidad La ciencia en el aula:

  1. Fuegos artificiales petrificados / Carlos Pérez Naval

 

Diez libros de divulgación para una Navidad de ciencia

Por Mar Gulis (CSIC)

Seguro que a estas alturas la lista de regalos y la de cosas que debes meter en la maleta navideña rondan tu cabeza o están apuntadas en algún cuaderno de notas. Te proponemos diez títulos de divulgación de la colección ¿Qué sabemos de? editada por el CSIC y Catarata para que estas fiestas puedas disfrutar y regalar lecturas sobre la ciencia y la tecnología que nos rodean.

Comenzamos con robots. Este término apareció por primera vez en una obra de teatro. El dramaturgo checo Karel Capek escribió en 1920 Robots Universales Rossum, RUR, una pieza en la que la compañía RUR fabrica replicantes de seres humanos con el fin de generar mano de obra barata y sumisa. Cuatro décadas más tarde se fundó en Estados Unidos la primera compañía de robótica, que instaló el primer robot industrial en una fábrica de General Motors. Ahora, la robótica interviene en múltiples ámbitos de nuestra vida y los robots se han convertido en sistemas móviles autónomos capaces de desenvolverse por sí mismos en diferentes entornos. “Nos encontramos en la era de los robots al servicio del ser humano, por eso es importante entender cómo funcionan y saber qué podemos esperar de ellos”, afirma la investigadora del CSIC Elena García Armada. La experta en robótica y creadora del primer exoesqueleto pediátrico ha escrito Los robots y sus capacidades (CSIC-Catarata), un texto que explica la morfología, los componentes y las habilidades de estos ingenios. Además, la publicación responde a cuestiones como si los robots son realmente inteligentes o si los seres humanos estamos preparados para confiar en ellos.

 

¡Atención: ultraprocesados!

Bollería, refrescos, roscones y un sinfín de dulces navideños industriales llenan las estanterías de cualquier supermercado ocupando más espacio que alimentos frescos como frutas, verduras, carne o pescado. En el último medio siglo hemos visto un crecimiento explosivo en la fabricación y el consumo de alimentos ultraprocesados. Estos productos que parecen llamarnos a gritos desde los lineales de las tiendas alimentación pueden tener consecuencias negativas para nuestra salud si abusamos de su consumo. ¿Cuál es la evidencia científica al respecto? ¿Qué tienen esas galletas o esas salchichas que no podemos parar de comer? Javier Sánchez Perona, investigador del CSIC en el Instituto de la Grasa, responde a estas cuestiones en el libro Los alimentos ultraprocesados (CSIC-Catarata). El autor explica la composición de estos productos, cómo llegaron a nuestra mesa, qué relación tienen con las altas tasas de sobrepeso y obesidad de la población adulta e infantil y qué medidas públicas e individuales se pueden adoptar para reducir su consumo.

El complejo mundo de las vacunas

En 1796, Edward Jenner, un médico rural que trabajaba en el sur de Inglaterra, descubrió que las pústulas de la viruela de las vacas podían proteger a los humanos de la viruela. En aquellos momentos no se sabía lo que era un virus ni cómo el sistema inmunitario nos protegía de los agentes infecciosos, pero ese fue el comienzo del desarrollo de la primera vacuna. A partir de aquí se inicia una historia épica de investigación, esfuerzo y perseverancia basada en el trabajo de la comunidad científica para combatir microorganismos causantes de enfermedades infecciosas; una historia que ya ha alcanzado grandes logros, pero que aún tiene muchos retos en el horizonte. Las investigadoras del CSIC Mercedes Jiménez, Nuria E. Campillo y Matilde Cañelles dan cuenta de este proceso en constante evolución y condensan en el libro Las vacunas (CSIC-Catarata) el conocimiento que existe sobre el método preventivo más eficaz contra enfermedades presentes en la actualidad.

Riadas, robos o ciberataques: ¿cómo gestionar el riesgo?

Los riesgos son parte de nuestra vida. Una epidemia, un robo en nuestro domicilio, un incendio forestal o un ciberataque representan algunas de las amenazas a las que las sociedades modernas deben hacer frente. Los investigadores del CSIC David Ríos y Roi Naveiro presentan en el libro Análisis de riesgos distintas metodologías para abordar el análisis y la gestión de estos eventos adversos. Se trata de una disciplina poco conocida, pero imprescindible en la actualidad. “Existe una inadecuada gestión de riesgos tanto a nivel individual como social, lo que se agrava por la falta de formación sólida en probabilidad y estadística en la mayoría de la población. Nuestro texto explica de forma sencilla los ingredientes fundamentales de este ámbito de estudio y las herramientas básicas que existen para desarrollarlo”, comentan los autores.

Hay un enorme potencial del análisis de riesgo aplicado al ámbito social para beneficio de administraciones y organizaciones no gubernamentales. / CSIC-Catarata

La salud de nuestro planeta

“La Tierra necesita un tratamiento médico que revierta sus problemas y los seres humanos, que somos los pacientes, también tenemos que hacer de médicos”. Con este contundente mensaje comienza el texto que han escrito los investigadores Fernando Valladares y Adrián Escudero junto con la periodista especializada en medioambiente Xiomara Cantera. La salud planetaria (CSIC-Catarata) no es un libro más sobre ecología. Es una mirada al pasado y al presente del lugar donde habitamos que explica cómo hemos llegado a una situación cercana al colapso y que propone argumentos y estrategias para cambiar esta deriva, poniendo en el centro el medioambiente y la idea de que solo existe una única salud global, que incluye a todos los organismos.

La contaminación del aire reduce la esperanza de vida a nivel mundial en una escala mayor que el sida. / CSIC-Catarata

¿Para qué tantas luces?

Miremos hacia donde miremos, en estas fechas nos acompañan cientos, miles de bombillas de todos los colores. Una luminosidad, a veces cegadora, que no tiene buenas consecuencias para nosotros, ni para nuestros ecosistemas. La luz artificial ha supuesto un salto exponencial en el desarrollo y bienestar de la sociedad, pero su uso abusivo ha convertido un elemento de progreso en una amenaza. De hecho, el 80% de los habitantes del planeta vive bajo cielos contaminados y un tercio de la población mundial no puede ver la Vía Láctea.

Alicia Pelegrina, integrante de la Oficina de Calidad del Cielo del Instituto de Astrofísica de Andalucía del CSIC, explica en La contaminación lumínica (CSIC-Catarata) las causas de este fenómeno y alerta sobre sus efectos. “Asociamos luz con riqueza, alegría y seguridad, pero la utilización inadecuada de la iluminación artificial se ha convertido en un grave problema ambiental. Es un tipo de contaminación que no duele, no se oye, ni se huele. No la percibimos como un problema, pero el exceso de luz es responsable de la mortalidad masiva de algunas aves, desequilibra los ecosistemas, supone un elemento clave en la desaparición de los insectos y provoca alteraciones en nuestro organismo”, declara la autora.

 El exceso de luz es responsable de la mortalidad masiva de algunas aves, es un factor clave en la desaparición de insectos y provoca alteraciones en nuestro organismo. / CSIC-Catarata

El origen de Homo sapiens

En 1758 Carlos Linneo asignó a los seres humanos el nombre científico Homo sapiens. Con esta denominación nos otorgó un lugar como especie dentro del reino de los animales, que aún hoy sigue vigente. Ahora bien, ¿cómo podemos definir nuestra especie? ¿Dónde y cuándo empieza a existir el Homo sapiens y dónde y cuándo acaban los representantes de otras especies humanas próximas? ¿Por qué esta especie ha perdurado hasta nuestros días frente a otras del género Homo? La comunidad científica ha tratado de dar respuesta a estas cuestiones desde hace cientos de años y, en la actualidad, siguen ocupando a equipos de investigación de todo el mundo.

El director del grupo de paleoantropología del Museo Nacional de Ciencias Naturales del CSIC Antonio Rosas ha escrito Origen y evolución de ‘Homo sapiens’ (CSIC-Catarata). La publicación recoge las diferentes teorías que tratan de acotar qué nos hace humanos. “Las recientes investigaciones en arqueología, paleoantropología y genética han cambiado la manera de entender el devenir evolutivo de nuestra especie. La irrupción de la paleogenómica, por ejemplo, ha permitido el estudio del ADN antiguo y ha hecho que se tambaleen algunos de los modelos más sólidos”, afirma el autor.

Los nuevos datos aportados en arqueología, paleoantropología y genética ponen en entredicho el modelo vigente de un origen africano relativamente reciente y muy localizado geográficamente / CSIC-Catarata

Física para entender el mundo

La física cuántica y la relatividad son los dos pilares de la física moderna y, por tanto, del pensamiento humano. Extienden nuestro conocimiento de la naturaleza, nuestra capacidad para predecirla y explicarla, y para producir nuevas tecnologías, a terrenos que van más allá de lo que podemos percibir y experimentar con nuestros sentidos, incluido el “sentido común”. El investigador y creador del blog de divulgación Cuantos completos Carlos Sabín hace una nueva entrega para continuar contando de forma accesible, y con ciertas dosis de humor, la física. En esta ocasión, Sabín aborda la teoría cuántica de campos, con la que se construye el modelo estándar de las partículas elementales, es decir, la teoría que explica el comportamiento de la naturaleza en el nivel más fundamental que nos es accesible. El libro se titula Física cuántica y relativista (CSIC-Catarata).

¿Quién vive en una cucharada de agua de mar?

Virus, bacterias, organismos flagelados unicelulares, microalgas y pequeños crustáceos. Todos estos seres vivos caben en apenas una cucharada de agua de mar y forman parte del plancton, un conjunto de microorganismos animales y vegetales sin los cuales la vida en la Tierra no sería posible. El investigador del Instituto de Ciencias del Mar del CSIC Albert Calbet presenta este formidable y diverso ‘equipo acuático’ invisible al ojo humano, pero responsable de la producción de una buena parte del oxígeno del planeta, del pescado que consumimos y precursor de combustibles fósiles como el petróleo. El plancton y la redes tróficas marinas (CSIC-Catarata) recorre el medio marino y explica algunos de los fenómenos más importantes que suceden en su interior, como la bomba biológica, el papel de bacterias o la función de los copépodos, unos crustáceos acuáticos más abundantes que los insectos (hay unas 12.000 especies descritas) imprescindibles para las redes tróficas marinas.

Los copépodos son una subclase de crustáceos acuáticos presentes en casi todos los mares y océanos. Son más abundantes que los insectos y constituyen la base de la alimentación de los peces / Albert Calbet

Más allá de una taza de café

El 90% de la cereza del café, el fruto de donde salen los granos para preparar la popular bebida, se desecha antes de llegar a la taza que desayunamos cada mañana. La industria cafetera aporta importantes beneficios, pero también genera una gran cantidad de desechos. Las investigadoras del Instituto de Investigación en Ciencias de la Alimentación del CSIC María Dolores del Castillo y Amaia Iriondo firman El café (CSIC-Catarata), un texto que recorre el camino desde las plantaciones de cafetales hasta la mesa del consumidor, explica los beneficios de esta bebida introducida en el siglo XVII por los venecianos y, sobre todo, describe los posibles usos, algunos ya introducidos en el mercado, que pueden tener los subproductos resultantes de la fabricación del café para que este sea más sostenible. Cosmética, alimentación animal, agricultura o incluso joyería y materiales de construcción son varias de las aplicaciones que tiene la cáscara del café, con alto contenido en fibra, y propiedades antioxidantes.

Si aún no te has decidido por un título, puedes empezar oyendo a sus autores en el pódcast Ciencia para leer. La ciencia también se escucha, y, mientras preparas esa maleta navideña, puedes conocer un poco más de todos estos temas que forman parte de nuestro día a día.

El Laboratorio histórico «Enrique Moles» de Química-Física: un viaje a la Edad de Plata de la ciencia española

Por Esteban Moreno, A. Ulises Acuña y Ángel Guirao (CSIC)*

Los laboratorios y sus enigmáticos y a veces vistosos instrumentos son determinantes para el avance científico. Sin embargo, tienen una vida corta, como nuestros teléfonos o televisores, y pronto son sustituidos por otros más sensibles, más rápidos o más funcionales. Su destino final es trágico: el desmantelamiento y la desaparición. Pero no siempre es así, ya que observamos que en muchos países de nuestro entorno se ha desarrollado una admirable cultura de respeto y atención al patrimonio científico instrumental. Esto da lugar a un gran interés por la conservación y el estudio de instrumentos y laboratorios que contribuyeron decisivamente a la historia científica y técnica. Y gracias a este interés uno todavía puede emocionarse contemplando los laboratorios y los instrumentos originales perfectamente conservados que utilizaron, por ejemplo, Wilhelm Röntgen para descubrir los Rayos X o Marie y Pierre Curie para aislar por primera vez el radio y el polonio radiactivos.

Este año se conmemora el 90 aniversario del Instituto Nacional de Física y Química, creado por la Junta para la Ampliación de Estudios e Investigaciones Científicas (JAE) como centro de investigación de excelencia en dichas disciplinas, durante la denominada Edad de Plata de la ciencia española, en el primer tercio del siglo XX. Con este propósito se construyó un edificio, generosamente financiado por la Fundación Rockefeller (EE.UU.), en el que desarrollaron sus investigaciones Blas Cabrera, Enrique Moles, Julio Palacios, Miguel A. Catalán, Antonio Madinaveitia, Julio Guzmán, Dorotea Barnés, Piedad de la Cierva, Felisa Martín y una larga serie de colaboradores e investigadoras. Disuelto el instituto original en 1939, el edificio alberga actualmente al Instituto de Química Física Rocasolano (IQFR) del CSIC.

Vista general del Laboratorio histórico Enrique Moles de Química y Física. En primer término, se puede apreciar una la balanza utilizada por Moles y colaboradores para la determinación de pesos atómicos y moleculares de diversos gases. / Erica Delgado (CSIC Cultura Científica)

Vista general del Laboratorio histórico Enrique Moles de Química y Física. En primer término, se puede apreciar una la balanza utilizada por Moles y colaboradores para la determinación de pesos atómicos y moleculares de diversos gases. / Erica Delgado (CSIC Cultura Científica)

El Rockefeller, como se le llamaba familiarmente, es un edificio proyectado y construido bajo los principios de la arquitectura funcional al servicio de la ciencia. Fue dotado originalmente con una excelente biblioteca, los laboratorios más modernos y mejor equipados de su época y unas infraestructuras técnicas comparables a las de los mejores centros de investigación contemporáneos, que incluían producción de aire líquido, generación y distribución de corrientes continua y alterna en baja y alta tensión, laboratorios especiales aislados de vibraciones y oscilaciones térmicas, etc.

Con motivo de su nonagésimo cumpleaños se ha inaugurado en este centro el Laboratorio histórico “Enrique Moles” de Química-Física, un espacio donde se ha recreado un laboratorio típico de la época del instituto original de los años 30. Ha sido equipado con mobiliario original parcialmente restaurado (mesas, sillas, banquetas, pizarras, campanas extractoras, fregaderos, etc.) sobre el que se exponen, en diferentes áreas, varios montajes de interés, como algunos de los componentes de vidrio de una línea de vacío similares a los utilizados por Enrique Moles para determinar pesos atómicos, el instrumental necesario para experimentos de electroquímica o una recreación de la mesa de trabajo del propio Moles.

Cuenta también con un espacio expositivo donde se pueden contemplar varias decenas de instrumentos científicos que, con una antigüedad media de cien años, son fieles representantes del patrimonio instrumental del CSIC que se conserva en el IQFR. Estos aparatos, que han llegado hasta nosotros gracias personas que aúnan conocimiento científico y sensibilidad histórica, han sido estudiados y catalogados en el marco del Plan de Conservación de Instrumentos y Laboratorios Científicos de Interés Histórico del CSIC.

Laboratorio histórico Enrique Moles de Química y Física. En primer lugar, montaje de los componentes de vidrio de una línea de vacío. Al fondo, espacio expositivo con diverso instrumental histórico del CSIC. / Irene Cuesta (CSIC Cultura Científica)

Laboratorio histórico Enrique Moles de Química y Física. En primer lugar, montaje de los componentes de vidrio de una línea de vacío. Al fondo, espacio expositivo con diverso instrumental histórico del CSIC. / Irene Cuesta (CSIC Cultura Científica)

El Laboratorio histórico “Enrique Moles” ha sido proyectado como un lugar donde quien lo visite pueda disfrutar de una experiencia inmersiva que le permita conocer y sentir, de primera mano, cómo se realizaba la ciencia experimental de vanguardia en Física y Química hace casi un siglo. Además, la exposición permite el fácil acceso a información sobre la naturaleza, objetivo y funcionamiento de cada uno de los instrumentos científicos que se muestran gracias a códigos de respuesta rápida (QR).

Entre otros instrumentos expuestos, se puede observar una balanza muy precisa con una sensibilidad de 0.005 mg, utilizada por el equipo de Moles en la determinación de pesos atómicos por el método de las densidades límite; un espectrógrafo idéntico al que permitió a Raman descubrir el efecto que lleva su nombre; diversos galvanómetros originales del Laboratorio de Investigaciones Físicas (JAE); o una espléndida máquina de dividir para fabricar escalas circulares graduadas, utilizadas en los instrumentos científicos que se construían en los talleres del Rockefeller, dirigidos por el ingeniero Juan M. Torroja.

Este Laboratorio histórico “Enrique Moles” de Química-Física es una importante y singular contribución a las actividades de divulgación de la historia del CSIC y de la JAE, y por consiguiente a la historia de las ciencias experimentales en España. Es, sin duda, un espacio de gran interés para estudiantes, dado su alto contenido educativo, pero también para que cualquier persona, al margen de sus conocimientos científicos, pueda descubrir mejor la práctica del quehacer científico, y la importancia de dicha actividad para el bienestar y sostenibilidad de nuestra sociedad.

El Laboratorio histórico “Enrique Moles” se puede visitar en el Instituto de Química Física Rocasolano, en la calle Serrano, 119 de Madrid, , en el Barrio de las Ciencias de esta ciudad, de lunes a viernes en horario de 8:00 a 19:00 horas. Para más información, consultar en el teléfono 915 61 94 00.

 

*Esteban Moreno Gómez es el responsable del Plan de Conservación de Instrumentos Históricos y Laboratorios Científicos de Interés Histórico del CSIC. A. Ulises Acuña y Ángel Guirao Elías son investigadores del CSIC en el Instituto de Química Física Rocasolano (IQFR-CSIC).