BLOGS
Ciencia para llevar Ciencia para llevar

CURIOSIDADES CIENTÍFICAS PARA COMPARTIR

Archivo de la categoría ‘Química’

Una de libros científicos para la Feria de Madrid

Cada junio los libros acuden a una cita obligada en el Parque de El Retiro de Madrid. La ciencia también tiene hueco en este encuentro anual entre textos y lectores. La Editorial CSIC y Los Libros de la Catarata nos presentan las novedades de sus colecciones ‘¿Qué sabemos de?’ y ‘Divulgación’ escritas por investigadores e investigadoras con el fin de acercar al gran público temas de actualidad científica de forma sencilla y amena. Este año los microbios que habitan en nuestro intestino, las algas como alimento, el olfato o los desiertos protagonizan algunos de los títulos que se presentarán en el pabellón de actividades culturales de la Feria del libro.

Jueves, 1 de junio.

El día 1 de junio, jueves, a las 12:30 horas, la ciencia de lo diminuto aparece en escena. En pocos años la nanotecnología se ha incorporado a un ritmo frenético en múltiples ámbitos, pero, como toda tecnología, la capacidad de controlar el nanomundo también tiene su ‘lado oscuro’. Marta Bermejo y Pedro Serena intentarán centrar el debate sobre sus aplicaciones y los posibles daños que puede comportar esta actividad en Los riesgos de la nanotecnología.

Uno de los retos a los que se enfrenta la sociedad en el siglo XXI es el de ser capaz de alimentar a una creciente población mundial, y las algas –uno de los recursos marinos más abundantes y menos explotados- son una posibilidad para paliar este problema. Elena Ibáñez y Miguel Herrero describen en Las algas que comemos algunas de las características únicas que poseen estos organismos vivos para convertirse en la base de la alimentación del futuro.

¿Quién no ha pasado tardes enteras jugando al ajedrez? Su complejidad, su profundidad e incluso su belleza nos siguen atrayendo como el mejor de los retos. La inserción de las matemáticas en el estudio del juego ha supuesto una simbiosis perfecta que alimenta, por un lado, el avance hacia la partida de ajedrez perfecta y, por otro, el desarrollo de nuevas mejoras en campos como el de la programación informática o la inteligencia artificial. Razvan Iagar nos lo cuenta en Matemáticas y ajedrez.

El proceso reproductivo tiene una importancia vital en cada una de sus fases. El libro La reproducción en la Prehistoria de la colección ‘Divulgación’ busca contribuir a valorar este proceso social básico, que además es susceptible de regulación y control. Sus autores Assumpció Vila-Mitjà, Jordi Estévez, Francesca Lugli y Jordi Grau, sostienen que este proceso no se limita a lo biológico y, apoyándose en un ilustrativo recorrido fotográfico, transmiten que ha estado regulado por normas sociales que permitían garantizar la continuidad de las sociedades desde la Prehistoria.

Tardes de feria con ciencia

Día 5 de junio.

El lunes 5 de junio a las 18:00 horas Carmen Peláez y Teresa Requena, autoras de La microbiota intestinal,  explicarán la importancia de las bacterias

que habitan en nuestro intestino y contribuyen a mantenernos saludables. La microbiota intestinal nos ayuda a digerir los alimentos, coopera con nuestro sistema inmune y optimiza el aprovechamiento energético de la dieta. Pero además, investigaciones recientes están tratando de descifrar en qué medida estos seres microscópicos también pueden afectar a nuestra actividad cerebral.

Por su parte, El olfato nos habla del más desconocido de nuestros cinco sentidos, a pesar de que es el más directo, el que más recuerdos evoca y el que más perdura en nuestra memoria. Según sus autores Laura López-Mascaraque y José Ramón Alonso, el olfato es en realidad un fino sensor químico y puede ser una nueva herramienta diagnóstica para algunas enfermedades.

M. Valderrama presentaráLos desiertos y la desertificación. Con un lenguaje sencillo y ameno, el investigador de la Estación Experimental de Zonas Áridas aclara las diferencias entre ambos términos, explicando qué es un desierto y qué no lo es, identifica las causas que lo originan y expone cómo se produce el proceso de degradación del territorio.

Día 6 de junio.

Cierra esta tarde de presentaciones La isla de Pascua, de la colección Divulgación. Escrito por Valentí Rull, la publicación sobre el lugar habitado más remoto del planeta responde a cuestiones como quiénes fueron los pobladores originarios de este lugar y con qué fin construyeron los moai, o cuándo y por qué desapareció esta civilización de la isla.

Las presentaciones se realizarán en el Pabellón Bankia de actividades culturales. Puedes consultar aquí la programación detallada. Además, los autores de las colecciones firmarán sus libros en las casetas de la Editorial CSIC (número 14) y de la editorial Los libros de la Catarata (número 149).

Ciencia en el Barrio: un proyecto para la igualdad de oportunidades

Por Mar Gulis (CSIC)

Según la última encuesta de Percepción social de la ciencia de la FECYT, cerca de un 5% de ciudadanas y ciudadanos participan en actividades de divulgación científica durante la Semana de la Ciencia y la Tecnología y hasta un 16% visita al menos una vez al año algún museo de ciencia. La mayoría de las participantes son personas que ya tienen un interés previo, muchas de ellas incluso son asiduas y otras constituyen lo que se conoce como público cautivo: alumnas y alumnos que asisten a actividades organizadas por sus centros escolares durante la jornada escolar. Incluso en estos casos, este público cautivo pertenece a institutos de secundaria habituales en las actividades que inundan cada año nuestras ciudades. La dificultad está en llegar a aquellas personas que no solo no acuden sino que ni siquiera conocen estas iniciativas.

‘Ciencia en el Barrio. Divulgación científica para el desarrollo social y la igualdad de oportunidades’ es un proyecto que busca cubrir esta laguna y facilitar el acceso a las actividades de divulgación científica a segmentos de la población que por sus características socioeconómicas hasta ahora no participaban de ellas. La iniciativa, puesta en marcha por el Consejo Superior de Investigaciones Científicas (CSIC) y que cuenta con el apoyo económico de la FECYT, se está desarrollando en cinco distritos de Madrid: Puente de Vallecas, Hortaleza, Carabanchel, Villaverde y San Blas. En ellos, a través de la colaboración de seis Institutos de Educación Secundaria de la red pública, el CSIC ha organizado cerca de medio centenar de actividades sobre temas de actualidad científica con diferentes formatos: talleres experimentales, conferencias, clubes de lectura, exposiciones y visitas guiadas a centros de investigación punteros. En su fase piloto han participado más de un millar de estudiantes de 4º de la ESO, nivel en el que el alumnado aún no ha tenido que elegir de forma definitiva el itinerario docente con la clásica separación de letras y ciencias. El resto de alumnas y alumnos del centro, así como las comunidades educativa y vecinal, también pueden participar en algunas de las actividades.

Ciencia en el Barrio

Durante un año, las chicas y los chicos han tenido la oportunidad de hablar de tú a tú con el personal investigador y técnico del CSIC; desmontar mitos y estereotipos sobre la ciencia; hacer preguntas y experimentar con todos sus sentidos. Catas de chocolate, talleres de cocina macromolecular, charlas sobre las aplicaciones de la luz o sobre cómo se forman las ideas, son algunas de las actividades en las que han participado. También han dialogado con los autores en clubes de lectura sobre libros de temas tan diversos como los neandertales, los robots o la vida de Alan Turing.

Y han sabido aprovechar la oportunidad. Han preguntado y debatido hasta dejar pasar el tiempo del recreo y alargar las horas programadas inicialmente para las actividades.

En la nueva etapa del proyecto, que comenzará este próximo abril, el CSIC aumentará el número de institutos y estudiantes implicados y fomentará la participación de las vecinas y vecinos de los distritos. Una de las principales novedades será la organización de una feria de divulgación científica en la que un grupo de chicas y chicos explicarán a otros estudiantes, familiares y vecinos los experimentos desarrollados en sus aulas con la tutela del CSIC.  Esperemos que sea la primera de muchas ferias.

 

FOTCIENCIA14: estas son las mejores imágenes de 2016

Por Mar Gulis (CSIC)

Un chorro de agua que cambia su trayectoria y curvatura al entrar en contacto con un dedo, resina fosilizada de conífera, una imagen microscópica de un medallón del siglo XIV, esferas de carbono que parecen una ciudad futurista… Estos son algunos de los temas abordados en las propuestas que han resultado elegidas en la 14 edición de FOTCIENCIA.

Si quieres verlas, mira este vídeo:

Estas imágenes, junto a otras que se elegirán entre las 666 presentadas, serán incluidas en un catálogo y formarán parte de una exposición que recorrerá diferentes museos y centros de España durante 2017. Dos copias de la muestra itinerante estarán disponibles para su préstamo gratuito.

FOTCIENCIA es una iniciativa de ámbito nacional organizada por el Consejo Superior de Investigaciones Científicas (CSIC) y la Fundación Española para la Ciencia y la Tecnología (FECYT), con la colaboración de la Fundación Jesús Serra. El objetivo es acercar la ciencia a la ciudadanía a través de fotografías que abordan cuestiones científicas desde una visión artística y estética. Cada imagen va acompañada de un comentario escrito por su autor/a en el que explica el interés científico de lo que ilustra.

Toda la información relativa a FOTCIENCIA está disponible en la web www.fotciencia.es

 

Los ‘puzles’ nanométricos que cambiarán tu ordenador

AutorPor Manuel Souto (CSIC)*

Imaginad el popular juego de construcciones de Lego reducido a una escala nanométrica, es decir, a la billonésima parte de un metro. Suponed que sus minúsculas piezas, constituidas individualmente por una molécula orgánica, encajan de un modo determinado para formar así un diminuto rompecabezas. Este nanoscópico puzle exhibiría a su vez unas propiedades físicas (por ejemplo, ópticas, magnéticas o eléctricas) definidas en función de la forma en que interaccionan sus piezas.

Imaginad ahora que podemos moldear y pulir todas estas ‘nanopiezas’ a nuestro antojo para que encajen de una manera prestablecida y que, como consecuencia, seamos capaces de modificar las propiedades físicas de este material. Pues bien, todo ello es posible gracias a la nanociencia molecular.

Gracias a la nanociencia molecular podemos crear rompecabezas de diminutas piezas ‘a la carta’ para emplearlos en nuevas aplicaciones.

Gracias a la nanociencia molecular podemos crear rompecabezas de diminutas piezas ‘a la carta’ para emplearlos en nuevas aplicaciones.

En el Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), concretamente en su departamento de Nanociencia Molecular y Materiales Orgánicos (Nanomol), se están investigando nuevos materiales orgánicos que presentan distintas aplicaciones en el área de la electrónica molecular. Una de ellas es su uso como interruptores moleculares que podrían tener aplicación como dispositivos de memoria con más densidad de información. En este caso, el dedo que presiona el interruptor consiste en un estímulo físico externo –como la variación de la temperatura o presión– que es capaz de hacer pasar al dispositivo de un estado apagado (OFF) a uno encendido (ON) de forma reversible. Por ejemplo, simplemente con calentar la solución de uno de estos compuestos orgánicos podremos pasar de un estado magnéticamente apagado a uno encendido y, al mismo tiempo, observar a simple vista un cambio de color de violeta a marrón que indique visualmente el estado encendido. Al enfriar de nuevo la solución, el sistema volverá al estado apagado.

Estos compuestos orgánicos pueden emplearse también como materiales conductores de electricidad si logramos que las moléculas interaccionen de una forma adecuada. Además presentan numerosas ventajas –una mayor versatilidad, ligereza y menor coste de manufactura– respecto a los materiales tradicionales empleados en la fabricación de dispositivos electrónicos, como el silicio. En un trabajo reciente, en el ICMAB hemos diseñado y sintetizado una de estas ‘nanopiezas’ (moléculas) orgánicas que encajan una con otra de un modo determinado consiguiendo que el puzle obtenido conduzca electricidad. En este caso, el material puede pasar de aislante a conductor simplemente con la variación de la presión, ya que de esta forma alteramos la distancia y la forma en la que interaccionan las piezas.

En resumen, gracias a la nanociencia molecular podemos diseñar y crear diminutas piezas ‘a la carta’ para obtener rompecabezas que presenten unas propiedades físicas determinadas y, de esta forma, emplearlos en nuevas aplicaciones, como dispositivos electrónicos y memorias con una mayor densidad de información.

 

* Manuel Souto Salom (@SoutoManel) es investigador posdoctoral en el ICMAB-CSIC y colaborador del blog ‘Reaccionando. Una bitácora para una generación no tan perdida’, El Periódico de Catalunya y El Huffington Post. También es autor del ensayo Sí es país para jóvenes, en el que se aborda la actualidad desde una perspectiva crítica y se proponen alternativas dirigidas a concienciar sobre la necesidad de un cambio fundamentalmente ético.

¿Qué son y cómo funcionan los mercados de emisiones de CO2?

Por Mar Gulis (CSIC)

AZZVV

Emisiones de gases sobre el cielo de Madrid / M. Rodríguez Gutiérrez

En 2015, nuestro país aumentó las emisiones de C02 a la atmósfera, incumpliendo así sus compromisos internacionales en esta materia. Esta es una de las conclusiones del Informe sobre Cambio Climático elaborado por el Observatorio de Sostenibilidad. Uno de sus autores, el biólogo del CSIC Jorge Lobo, considera que esta situación se debe a nuestro “uso intensivo y abusivo de los combustibles fósiles”, sobre todo del carbón, mientras las energías renovables no acaban de despegar. Junto a ello, el investigador señala la ineficiencia del mercado de los derechos de emisión, un mecanismo que funciona a nivel internacional y que, aunque se concibió para luchar contra el calentamiento global, ha cosechado escasos resultados.

La web del Ministerio de Agricultura (MAGRAMA) explica que “el comercio de derechos de emisión es un instrumento de mercado persigue un beneficio medioambiental: que un conjunto de plantas industriales reduzcan colectivamente las emisiones de gases contaminantes a la atmósfera”.

Para que el mecanismo funcione tiene que haber una autorización de emisión, es decir, un permiso otorgado a una instalación para que pueda emitir gases. Pero también existe el derecho a emitir, que se refiere a la cantidad de gases que podrán emitirse. Este derecho de emisión es transferible: se puede comprar o vender. Ahí está la clave.

Tal y como explica el MAGRAMA, “actualmente existen mercados de emisiones que operan en distintos países y que afectan a diferentes gases”.  La Unión Europea puso en marcha en 2005 un mercado de CO2 que cubre, en los 28 Estados miembros, las emisiones de este gas de instalaciones como centrales térmicas, refinerías, cementeras o papeleras. Este régimen afecta a más de 10.000 instalaciones y a más de 2.000 millones de toneladas de CO2, según cifras del MAGRAMA, lo que supone “en torno al 45% de las emisiones totales de gases de efecto invernadero en la UE”.

Sin embargo, en Bruselas se debate desde hace tiempo sobre cómo reformar este mercado. Teóricamente su objetivo es reducir las emisiones de gases con efecto invernadero y combatir así el cambio climático. Pero el propio Parlamento Europeo (PE) señala que “los desequilibrios entre la oferta y la demanda de los derechos de emisión está desincentivando las inversiones verdes”, es decir, la inversión de los Gobiernos en energías limpias que nos lleven a un modelo más sostenible y menos basado en los combustibles fósiles. Para que fuera eficaz, la compra-venta de derechos de emisión se debería realizar a un precio que anime a la industria “a buscar alternativas para ahorrar energía y reducir sus emisiones”, afirma el PE en su página web.

El PE afirma también que en la actualidad “el precio de mercado de estos permisos es muy bajo” porque la demanda se ha desplomado a raíz de la crisis económica. Por ejemplo, “en 2013 había un exceso de unos 2.000 millones de licencias comparado con las emisiones reales, que podría alcanzar los 2.600 millones en el horizonte de 2020”. Cada licencia concede a su titular el derecho de emitir una tonelada de CO2.

XBVXCZVB

La apuesta por las energías renovables, como la eólica, es clave para ir hacia un modelo energético más sostenible / Steve Wilson

El investigador Jorge Lobo explica que “en las cumbres del clima se establecen unos derechos de emisión para cada país y después se deja operar al mercado libremente. Por ejemplo, un país concreto, con una cantidad de población, un PIB, etc., tiene unas capacidades de emisión determinadas; pero si por tener un desarrollo escaso o por hacer un uso intensivo de renovables o por la razón que sea no tiene esa capacidad de emisión, puede vender los derechos. Es decir, las toneladas de CO2 que puede emitir pero que no emite, se las puede vender a otro Estado”. Y añade: “Si esos derechos de emisión se ponen en el mercado y cotizan alto, a muchos países no les rentará adquirirlos, sino que preferirán reconvertir su industria o invertir en renovables. Pero si  valen poco, puede compensar emitir CO2 porque luego compras esos derechos fuera”. Lobo considera que en el actual escenario de bajos precios, el comercio de emisiones, lejos de desincentivar a las industrias en el uso de combustibles fósiles, facilita el mantenimiento del modelo actual y con él las elevadas emisiones de CO2 a la atmósfera.

Para salir de esta situación ya en 2013 el PE votó a favor de una medida temporal para que algunas licencias programadas para 2014-2016 se retrasaran hasta 2019-2020. También se ha contemplado la creación de una reserva que reequilibre la oferta y la demanda. Si el exceso de oferta supera un determinado umbral, se retirarán licencias del mercado y se depositarán en la citada reserva hasta que, si cambian las circunstancias, se pongan de nuevo en circulación.

Sin embargo, investigadores como Lobo y otras voces críticas se muestran escépticos ante este tipo de medidas. En su opinión, la solución pasaría por incrementar la inversión en  energías renovables para, poco a poco, ir hacia un modelo de economía baja en carbono y más sostenible a largo plazo.

¿Sabes quién fue la inventora del ‘baño maría’?

Por Mar Gulis (CSIC)

adfsaf

El ‘baño María’ se utiliza en miles de procesos industriales, químicos y culinarios.  / Wikipedia.

Flan, pudin, paté, chocolate fundido… Para elaborar estos postres siempre recurrimos a una antigua técnica: el ‘baño María’. La invención de este procedimiento se atribuye a la egipcia María la Judía, la primera alquimista de la que se tiene noticia. Antes de ahondar en este personaje, retrocedamos en los siglos para entender el contexto histórico en el que se produjeron este y otros inventos.

Estamos en el Egipto grecorromano de los primeros siglos de nuestra era. Entonces la ciudad de Alejandría, fundada por Alejandro Magno en el 332 antes de nuestra era en el delta del río Nilo, se convertiría en el punto de encuentro entre oriente y occidente. El contacto entre ambas culturas estaría detrás del surgimiento de la alquimia. Bajo este término, el diccionario de la RAE incluye la siguiente descripción: “Conjunto de especulaciones y experiencias, generalmente de carácter esotérico, relativas a las transmutaciones de la materia, que influyó en el origen de la ciencia química y tuvo como fines principales la búsqueda de la piedra filosofal y de la panacea universal”. En su libro La alquimia, el investigador del CSIC Joaquín Pérez Pariente explica que popularmente se la identifica como “cualquier práctica de transformación de la materia anterior al establecimiento de la química como disciplina académica en el siglo XVIII”. Sin embargo, frente a esta perspectiva, que “no se ajusta a la realidad histórica”, el autor propone una visión mucho más compleja de la alquimia,  que nos ayudaría a entender mejor “la relación del ser humano con la materia” y los orígenes de la ciencia moderna.

<c<cx

Grabado que representa a María la Judía, del libro ‘Symbola Aurea Mensae Duodecim Nationum’, de Michael Maier. / Wikipedia.

Efectivamente, a ejercitar la alquimia dedicó buena parte de su vida la protagonista de este post. Sabemos esto gracias al códice Marcianus 299, un manuscrito que se conserva en la iglesia veneciana de San Marcos y que, como explica Pérez Pariente, “contiene casi todo lo que hoy conocemos acerca de los orígenes de la alquimia”. El códice 299 recopila textos alquímicos atribuidos a diversos autores. Entre ellos destaca Zósimo de Panópolis, cuyos escritos incluyen menciones a María la Judía, a la que admira “por su gran conocimiento del Arte Sagrado, nombre con el que se conocía la alquimia”.

Como contábamos al principio, a ella le debemos el conocido ‘baño maría’ (en latín balneum Mariae), que consiste en introducir un recipiente cuyo contenido se quiere calentar en otro mayor que contiene agua en ebullición. Este método, muy utilizado tanto en laboratorios de química como en nuestras cocinas, ha perdurado hasta nuestros días. Miles de procesos industriales, químicos y culinarios que precisan de un calor indirecto, uniforme, progresivo y constante recurren al ‘baño María’ que inventó la enigmática alquimista hace tantos siglos.

María, que podría considerarse como una de las primeras científicas de la historia, realizó también aportaciones a la ciencia como la invención de instrumental de laboratorio. Aunque su identidad ha quedado un tanto desdibujada con el paso de la historia, sí se sabe que diseñó complicados aparatos destinados a la destilación y sublimación de materias químicas. Quizá el ejemplo más célebre sea el tribikos, un alambique de tres brazos para obtener sustancias purificadas por destilación.

También se le atribuye la creación del kerotakis, otro aparato en el que, al calentar mercurio o azufre, obtenía una substancia llamada ‘negro de María’ (que sería la primera etapa de la transmutación de los elementos). Con el paso del tiempo, este y otros inventos se emplearían para extraer esencias (aceites) de plantas y obtener así perfumes.

Sin embargo, es poco lo que conocemos de esta alquimista, pues ninguno de sus escritos originales ha perdurado. La teoría más extendida sostiene que parte de la obra de María la Judía se perdió por la persecución que el emperador romano Diocleciano emprendió en el siglo III contra todos los alquimistas de Alejandría. Así, esta práctica comenzó a considerarse como algo esotérico, cuando en realidad fue la ciencia precursora de la química moderna. Es más, la alquimia continuó practicándose a lo largo de los siglos, hasta el punto de que, como señala Pérez Pariente, se trata de “una tradición con dos mil años de antigüedad que ha arraigado y prosperado en todas las culturas que la han conocido, incluida nuestra sociedad occidental de raíz cristiana”.

Biominería: el poder de las ‘bacterias comepiedras’

AutorPor Felipe Gómez Gómez (CSIC-INTA)*

Montones de mineral apilados y humeantes. Casi desde el inicio de la minería esta ha sido una imagen habitual a pie de mina. Los mineros han regado y siguen regando con agua ácida el material extraído de la tierra, porque saben que de esta forma se obtiene un mayor rendimiento al procesarlo. Históricamente se ha hecho así porque funciona, pero pocas veces ha trascendido la explicación científica.

Bacilo

Acidithioabacillus ferrooxidans fue la primera bacteria aislada de un ambiente ácido en una mina española y capaz de oxidar elementos metálicos.

Corta Atalaya

Mina a de Corta Atalaya en Río Tinto (Huelva). / Wikipedia.

Lo cierto es que, de modo consciente o no, se está practicando la biominería. Al regar el mineral, se potencia el crecimiento de bacterias que favorecen la extracción de metales como cobre, cobalto, níquel o cinc. El aumento de la actividad bacteriana hace que suba la temperatura y, con ella, la evaporación de agua. Por eso vemos vapor emanar de los montones.

De hecho, sabemos que gran parte del cobre que se extrae al disolver el mineral en un líquido, proceso conocido como lixiviación, se obtiene gracias a la intervención de microorganismos que normalmente se encuentran de forma natural en los minerales. Por esta razón sería más preciso hablar ‘biolixiviación’.

Hoy en día se están desarrollando investigaciones para entender mejor estos procesos y optimizar sus rendimientos. Pero no queremos quedarnos en este punto: también tratamos de identificar microorganismos que de forma específica incrementan la extracción de ciertos metales.

¿Cómo trabajan las bacterias mineras?

Las bacterias logran hacer solubles los minerales porque se alimentan de ellos; motivo por el que son conocidas como ‘comedoras de piedras’ o ‘quimiolitótrofas’. Para ganar energía oxidan los minerales: les extraen electrones, los almacenan en una especie de pila y producen con ello una diferencia de potencial que utilizan para sus procesos metabólicos. En estos procesos de oxidación transforman la materia en CO2 como producto de desecho.

La primera bacteria identificada capaz de lixiviar fue aislada en 1947 al investigar el deterioro de los equipos metálicos en una mina española, en río Tinto. La gran capacidad de oxidación de sus aguas hacía que el material metálico, como carretillas, trenes y demás medios de carga, tuvieran una degradación muy acelerada, fuera de lo habitual. Por aquel entonces la razón se achacó a las aguas ácidas, pero aun así los responsables de la mina decidieron que el fenómeno fuera estudiado por un equipo de microbiólogos. Como resultado de su trabajo se aisló el microorganismo Acidithiobacilus ferrooxidans, que, traducido del griego, es acido porque crece a pH bajo (ácido), thio porque es capaz de oxidar azufre, bacillus porque tiene forma de bastón (es, por tanto, un bacilo) y ferrooxidans porque además es capaz de oxidar hierro.

Existen otras bacterias biolixiviadoras con nombres similares en alusión a los elementos que son capaces de oxidar y por tanto de liberar (lixiviar) al medio líquido donde están creciendo.

Atractivo marciano

Marte

El hecho de que las bacterias litotrofas no se alimenten de materia orgánica las hace candidatas a habitar Marte.

Las ‘bacterias comepiedras’ se están poniendo de moda porque, al ser capaces de alimentarse exclusivamente de material inorgánico, son candidatas potenciales a habitar lugares exóticos, extremos e incluso otros cuerpos planetarios distintos a la Tierra. Algunos de estos minerales se han identificado en la superficie marciana, así que si confirmamos la presencia de agua en el planeta rojo la ecuación nos permite concluir que en Marte podrían llegar a habitar bacterias de este tipo. Además, pensando en el aprovechamiento económico, se podrían utilizar para extraer minerales (hacer biominería) en la superficie de nuestro planeta vecino.

 

* Felipe Gómez Gómez es investigador en el Centro de Astrobiología (CSIC-INTA).

‘Ciencia para llevar’ cumple dos años: estos son nuestros 10 posts más leídos

Por Mar Gulis (CSIC)

Hoy en ‘Ciencia para llevar’ estamos de enhorabuena por partida doble: celebramos nuestro segundo aniversario y también que, hace ya algunas semanas, superamos la simbólica cifra del millón de visitas (el 1 de febrero alcanzamos las 1.036.438). En estos dos años de blog hemos publicado 218 entradas escritas por investigadores e investigadoras del CSIC o por Mar Gulis, el nombre colectivo que adopta el equipo editor de ‘Ciencia para llevar’.

Astrofísica, ética aplicada, alimentación saludable… En nuestros posts hemos hablado de una gran variedad de temas científicos y abarcado prácticamente todas las áreas del conocimiento, reflejando la pluralidad de líneas de investigación en las que trabajan los más de 120 centros del CSIC. Con ello hemos querido contribuir a que la ciencia ocupe el lugar que se merece en nuestra cultura general y retornar en cierta forma a la sociedad la inversión pública en investigación.

Mosaico

Como testimonio de lo que han supuesto estos dos años de blog, hoy recogemos las 10 entradas que mayor acogida han tenido entre quienes nos leéis. Sería injusto decir que son las mejores, porque otras de menor impacto tienen también una gran calidad. De lo que no hay duda es que han sido capaces de despertar un enorme interés. Si todavía no las has leído, aquí tienes una nueva oportunidad para hacerlo:

  1. ¿Los restos de una persona ahogada en el diluvio universal? En 1725 un médico suizo presentó a la comunidad científica los restos de una persona que se ahogó en el famoso diluvio (agosto 2015).
  1. La perturbadora teoría de los mundos paralelos. Cada vez que tomamos una decisión, la realidad se desdobla en mundos distintos… Esta hipótesis gana adeptos en la física cuántica (octubre 2014).
  1. El experimento científico más hermoso de todos los tiempos: la doble rendija. La prueba de la doble rendija sigue fascinando a la comunidad científica más de 200 años después: contiene el misterio de la física cuántica (noviembre 2015).
  1. ¿De dónde viene el nombre de los elementos químicos? El nombre del mercurio en latín significa plata líquida, el curio debe su nombre a su descubridora (Marie Curie) y un pueblecito sueco tiene cuatro elementos dedicados a él (abril 2014).
  1. El Mar Muerto está muy vivo. En un mililitro del Mar Muerto viven millones de microoganismos que resisten los altos niveles de salinidad. Algunos podrían ayudarnos a llevar la vida a otros planetas (agosto 2014).
  1. ¿Qué te dice tu caca? La textura y el color de nuestros excrementos informan de la salud de nuestra flora intestinal. En algunos casos puede ser necesario un trasplante de heces para recuperarla (enero 2015).
  1. Si te pica una medusa, ni amoniaco ni agua dulce. Conoce cómo actuar en caso de que te pique uno de estos animales gelatinosos (julio 2014).
  1. ¿Qué había ‘antes’ del Big Bang? Para el físico Alberto Casas, esta pregunta tiene el mismo sentido que plantearse a qué dedicaba Dios su tiempo antes de crear el tiempo (marzo 2014).
  1. Sólido, líquido, gaseoso, plasma… ¿Hay más estados de la materia? El estado sólido no es tal, sino un conjunto de diferentes formas de solidificarse la materia (mayo 2014).
  1. La manzana de Apple, ¿un homenaje de Steve Jobs a Turing? El origen de uno de los logos más conocidos del mundo podría estar relacionado con la forma en la que se suicidó Turing, matemático y ‘padre’ de la computación (septiembre 2014).

El origen del universo: las tres grandes evidencias del Big Bang

AutorPor Alberto Fernández Soto (CSIC)*

Todo cambia: nosotros, otros seres vivos, la geografía de nuestro planeta, etc. El universo también evoluciona, aunque habitualmente lo hace en escalas de tiempo mucho mayores. Existen procesos, como la explosión de una supernova, que podemos observar en tiempo real. Pero además el cosmos cambia como un todo, y hace aproximadamente 13.800 millones de años conoció la mayor transformación que podemos imaginar: surgió de repente, de modo que la materia, la energía, e incluso el espacio y el tiempo aparecieron espontáneamente a partir de la nada en lo que hoy llamamos la ‘Gran Explosión.

Esta es una idea difícil de digerir, y como tal requiere evidencias muy sólidas que la apoyen. Tres son las grandes pruebas en que se basa:

  1. El universo se expande. Edwin Hubble observó hacia 1925 que las galaxias se alejan unas de otras a velocidades proporcionales a la distancia entre ellas. Georges Lemâitre había probado anteriormente que un universo en expansión representaba una solución válida de las ecuaciones de Einstein, aunque éste se había mostrado reticente (sus ecuaciones son correctas, pero su física es abominable, cuentan que le dijo). Si el cosmos se encuentra en expansión es fácil imaginar que en el pasado ocupaba un volumen mucho menor y, en el límite, un volumen nulo. Tal instante, en el que la temperatura y la densidad serían extremadamente altas, es lo que llamamos ‘Gran Explosión’ o ‘Big Bang’.
  1. La composición del universo es tres cuartos de hidrógeno y un cuarto de helio, los dos elementos más ligeros. Todo el resto de la tabla periódica, incluyendo los elementos que componen la mayor parte de nuestros cuerpos y nuestro planeta (silicio, aluminio, níquel, hierro, carbono, oxígeno, fósforo, nitrógeno, azufre…), representa aproximadamente el 2% de la masa total. Cuando hacia 1950 algunos físicos (entre ellos Fred Hoyle, William Fowler y el matrimonio formado por Geoff y Margaret Burbidge) entendieron por primera vez las ecuaciones que regían las reacciones nucleares en las estrellas, probaron que todos esos átomos ‘pesados’ habían nacido en los núcleos estelares. George Gamow, Ralph Alpher y Robert Herman aplicaron las mismas ecuaciones a la ‘sopa’ de partículas elementales que debería haber existido en los primeros instantes del universo, teniendo en cuenta su rápido proceso de enfriamiento. Dedujeron que, aproximadamente tres minutos después del instante inicial, la temperatura habría bajado lo suficiente como para frenar cualquier reacción nuclear, dejando un universo con las cantidades observadas de hidrógeno y helio.

    Arno Penzias y Robert Wilson en la antena de Holmdel (Bell Labs, Nueva Jersey) con la que descubrieron la radiación de fondo de microondas. / NASA.

    Arno Penzias y Robert Wilson en la antena de Holmdel (Bell Labs, Nueva Jersey) con la que descubrieron la radiación de fondo de microondas. / NASA.

  1. Si el universo nació en ese estado indescriptiblemente caliente y se ha ido enfriando, ¿cuál será su temperatura actual? Eso se preguntaban Robert Dicke, Jim Peebles, Peter Roll y David Wilkinson en Princeton a mediados de los sesenta. Antes de completar su antena para intentar medir esa temperatura, supieron por un colega que dos astrónomos de los cercanos laboratorios Bell, que utilizaban una gran antena de comunicaciones para medir la emisión de la Vía Láctea, detectaban un ruido de fondo que no conseguían eliminar. Arno Penzias y Robert Wilson habían descubierto, sin saberlo, la radiación de microondas causada por la temperatura de fondo2,7 grados Kelvin (aproximadamente menos 270 grados)– que constituye el eco actual de la Gran Explosión.

Otros resultados recientes, como la medida de la tasa de expansión del universo a partir de observaciones de supernovas (1998) o la detección de escalas ‘fósiles’ características en el agrupamiento de galaxias (2005), han permitido estimar con precisión los parámetros del modelo. Así, la edad del universo es 13.800 millones de años (con una precisión menor del 1%).

La evolución de la estructura del universo según una simulación por ordenador, en escalas de tiempo que cubren desde hace 12.800 millones de años (línea superior) al presente (línea inferior), y escalas de tamaño que van desde 325 (columna izquierda) a 50 millones de años-luz (columna derecha). / Millennium-II Simulation: M. Boylan-Kolchin et al. (Max Planck Institute for Astrophysics), Volker Springel (Heidelberg Institute for Theoretical Studies).

La evolución de la estructura del universo según una simulación por ordenador, en escalas de tiempo que cubren desde hace 12.800 millones de años (línea superior) al presente (línea inferior), y escalas de tamaño que van desde 325 (columna izquierda) a 50 millones de años-luz (columna derecha). / Millennium-II Simulation: M. Boylan-Kolchin et al. (Max Planck Institute for Astrophysics), Volker Springel (Heidelberg Institute for Theoretical Studies).

Eso sí, menos de un 5% del contenido del cosmos es la materia que estamos acostumbrados a ver. Existe otro tipo de materia del que hay una cantidad cuatro veces mayor que de materia normal –sólo notamos su efecto gravitatorio, y la llamamos ‘materia oscura–. Además una nueva componente, que llamamos ‘energía oscura a falta de un nombre mejor, representa casi un 75% del contenido del cosmos. ¿Su propiedad principal? Que genera una presión que se opone a la gravedad haciendo que el universo se encuentre en un proceso de expansión desbocada.

Hace 10.000 millones de años se formó nuestra galaxia, y nuestro sistema solar apareció solamente unos 5.000 millones de años atrás. En uno de sus planetas aparecieron hace casi 4.000 millones de años los primeros seres vivos: entes capaces de almacenar información genética, reproducirse y evolucionar. Tuvieron que pasar casi todos esos años para que, prácticamente ayer, apareciera una especie de primate capaz de observar el mundo a su alrededor, hacerse preguntas, y almacenar información de un nuevo modo: el instinto, el habla, la escritura, la cultura, la ciencia…

La cosmología observacional ha conseguido hoy responder a muchas preguntas que hace poco más de un siglo eran absolutamente inatacables para la física. No obstante un gran número de nuevos problemas se han abierto: ¿Qué es la materia oscura? ¿Cuál es la naturaleza de la energía oscura y cómo provoca la expansión? ¿Qué produjo la asimetría inicial entre materia y antimateria? ¿Tuvo el universo temprano una fase inflacionaria de crecimiento acelerado? Multitud de programas observacionales y esfuerzos teóricos y computacionales se dedican a intentar resolver estas cuestiones. Esperamos que al menos algunas de ellas tengan respuesta en los próximos años.

 

* Alberto Fernández Soto investiga en el Instituto de Física de Cantabria (CSIC-UC) y en la Unidad Asociada Observatori Astronòmic (UV-IFCA). Junto con Carlos Briones y José María Bermúdez de Castro, es autor de Orígenes: El universo, la vida, los humanos (Crítica).

¿Qué pasa cuando te sube la adrenalina?

Armando-AlbertPor Armando Albert (CSIC)*

Verano. Han terminado las clases y hay mucho tiempo libre. Javier se levanta tarde, apenas desayuna y sale a la calle. Tarde o temprano se encontrará con sus amigos en la esquina de siempre. Con su calma habitual, cruza con el semáforo en rojo. Los pitidos de los coches no le molestan. Únicamente piensa: “¡Qué calor, no hay quien aguante el sol!”. Mientras, empieza a sudar ligeramente y entorna los ojos.

Por su camino se cruza una amiga de sus padres. Javier nota sus labios en la mejilla en el momento del beso de rigor. Un segundo después se encuentra con Marina. Bien vestida, derecha y muy guapa. Esta vez, el encuentro se produce sin palabras, sin contacto y con un saludo que se queda en un simple gesto con la cabeza. Javier siente vergüenza, un estremecimiento en el cuerpo y el pulso acelerado. Pasa de largo. Instantes después, nada de nada, normalidad. Aparecen sus amigos y, aunque siente hambre, se va a dar una vuelta.

 La adrenalina, también conocida como epinefrina, es una hormona y un neurotransmisor / Wikipedia

La adrenalina, también conocida como epinefrina, es una hormona y un neurotransmisor / Wikipedia

Los estímulos que Javier percibe, el pitido de un coche, el calor, la luz del sol o la sensación de hambre, tienen asociada una respuesta a nivel celular y a nivel molecular. Este tipo de respuestas fisiológicas no están socialmente condicionadas y son comunes para la mayoría de los organismos superiores. Asimismo, cuando alguien se cruza con la persona que le gusta, como le sucede a Javier con Marina, su organismo suele segregar una sustancia química al torrente sanguíneo, la adrenalina. Esta hormona es secretada en situaciones de alerta o de peligro.

La adrenalina es un neurotransmisor, es decir, una molécula que transmite información de una neurona (un tipo de célula del sistema nervioso) a otra. Se trata además de una molécula que es reconocida específicamente en la superficie de nuestras células. Cuando esto sucede se desencadena un proceso que implica la contracción del corazón y, por tanto, el incremento de la frecuencia cardiaca; la producción de azúcar en el hígado; una aceleración de la respiración y la dilatación de los conductos del aire. El cuerpo debe estar preparado para lo que pueda ocurrir. Lo mismo sucede en las horas previas a un examen, ante un encuentro inesperado o frente a la amenaza de un posible asalto. La adrenalina actúa ante una situación de tensión, sea esta agradable o desagradable, a la que el cuerpo debe adaptarse. En otras palabras, su presencia es una respuesta involuntaria frente a la percepción del riesgo.

En situaciones de alerta o peligro, nuestro organismo segrega adrenalina / Flickr

En situaciones de alerta o peligro, nuestro organismo segrega adrenalina / Flickr

Cuando alguien se encuentra en peligro o alerta, es el hipotálamo, situado en el cerebro, el que ordena a las glándulas suprarrenales la liberación de adrenalina y otras hormonas al torrente circulatorio. En cuestión de segundos el cuerpo responde. Es lo que se conoce como ‘subidón de adrenalina’, que facilita una respuesta física potente. Dilatar las vías aéreas permite captar una mayor cantidad de oxígeno, lo que mejorará el rendimiento físico para responder a un aumento de actividad repentino (por ejemplo, la huida ante un depredador u otro tipo de amenaza). La contracción de los vasos sanguíneos redirige la sangre para movilizar más energía a los músculos. Incluso pueden mejorar temporalmente ciertos tipos de memoria y afinarse los sentidos.

Volvamos a la historia de Javier. Marina pasa de largo y unos segundos después todo vuelve a la normalidad, las alteraciones físicas desaparecen. ¿Pero qué ha sucedido exactamente en los instantes anteriores? Para comprender el proceso podemos explicar la respuesta celular en tres etapas. En la primera, una señal o estímulo (en este caso, la adrenalina que segrega Javier al encontrarse con Marina) llega a la superficie de la célula y allí activa un receptor. La segunda etapa implica que el receptor activado transmita la información al interior de la célula, codificándola en una señal química. Por último, esta señal o mensaje secundario activa un sistema amplificador –sistema efector– que modifica el comportamiento de la célula en función del estímulo primario. A partir de ahí se desencadenarán progresivamente las alteraciones físicas antes descritas.

 

* Armando Albert trabaja como investigador en el Instituto de Química Física Rocasolano del CSIC. Este post se ha extraído del libro A través del cristal. Cómo la cristalografía ha cambiado la visión del mundo (CSIC-Catarata).